Topic: Stylometry
Published:
2025
- DetailsCampanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
Abstract
The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
2024
- DetailsMarulli, F., Campanile, L., de Biase, M. S., Marrone, S., Verde, L., & Bifulco, M. (2024). Understanding Readability of Large Language Models Output: An Empirical Analysis [Conference paper]. Procedia Computer Science, 246(C), 5273–5282. https://doi.org/10.1016/j.procs.2024.09.636
Abstract
Recently, Large Language Models (LLMs) have seen some impressive leaps, achieving the ability to accomplish several tasks, from text completion to powerful chatbots. The great variety of available LLMs and the fast pace of technological innovations in this field, is making LLM assessment a hard task to accomplish: understanding not only what such a kind of systems generate but also which is the quality of their results is of a paramount importance. Generally, the quality of a synthetically generated object could refer to the reliability of the content, to the lexical variety or coherence of the text. Regarding the quality of text generation, an aspect that up to now has not been adequately discussed is concerning the readability of textual artefacts. This work focuses on the latter aspect, proposing a set of experiments aiming to better understanding and evaluating the degree of readability of texts automatically generated by an LLM. The analysis is performed through an empirical study based on: considering a subset of five pre-trained LLMs; considering a pool of English text generation tasks, with increasing difficulty, assigned to each of the models; and, computing a set of the most popular readability indexes available from the computational linguistics literature. Readability indexes will be computed for each model to provide a first perspective of the readability of textual contents artificially generated can vary among different models and under different requirements of the users. The results obtained by evaluating and comparing different models provide interesting insights, especially into the responsible use of these tools by both beginners and not overly experienced practitioners. © 2024 The Authors. - DetailsCampanile, L., De Fazio, R., Di Giovanni, M., & Marulli, F. (2024). Beyond the Hype: Toward a Concrete Adoption of the Fair and Responsible Use of AI [Conference paper]. CEUR Workshop Proceedings, 3762, 60–65. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205601768&partnerID=40&md5=99140624de79e37b370ed4cf816c24e7
Abstract
Artificial Intelligence (AI) is a fast-changing technology that is having a profound impact on our society, from education to industry. Its applications cover a wide range of areas, such as medicine, military, engineering and research. The emergence of AI and Generative AI have significant potential to transform society, but they also raise concerns about transparency, privacy, ownership, fair use, reliability, and ethical considerations. The Generative AI adds complexity to the existing problems of AI due to its ability to create machine-generated data that is barely distinguishable from human-generated data. Bringing to the forefront the issue of responsible and fair use of AI. The security, safety and privacy implications are enormous, and the risks associated with inappropriate use of these technologies are real. Although some governments, such as the European Union and the United States, have begun to address the problem with recommendations and proposed regulations, it is probably not enough. Regulatory compliance should be seen as a starting point in a continuous process of improving the ethical procedures and privacy risk assessment of AI systems. The need to have a baseline to manage the process of creating an AI system even from an ethics and privacy perspective becomes progressively more important In this study, we discuss the ethical implications of these advances and propose a conceptual framework for the responsible, fair, and safe use of AI. © 2024 Copyright for this paper by its authors.
2023
- DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2022
- DetailsCampanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
Abstract
The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022 - DetailsConference Sensitive Information Detection Adopting Named Entity Recognition: A Proposed MethodologyCampanile, L., de Biase, M. S., Marrone, S., Marulli, F., Raimondo, M., & Verde, L. (2022). Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 377–388. https://doi.org/10.1007/978-3-031-10542-5_26
Abstract
Protecting and safeguarding privacy has become increasingly important, especially in recent years. The increasing possibilities of acquiring and sharing personal information and data through digital devices and platforms, such as apps or social networks, have increased the risks of privacy breaches. In order to effectively respect and guarantee the privacy and protection of sensitive information, it is necessary to develop mechanisms capable of providing such guarantees automatically and reliably. In this paper we propose a methodology able to automatically recognize sensitive data. A Named Entity Recognition was used to identify appropriate entities. An improvement in the recognition of these entities is achieved by evaluating the words contained in an appropriate context window by assessing their similarity to words in a domain taxonomy. This, in fact, makes it possible to refine the labels of the recognized categories using a generic Named Entity Recognition. A preliminary evaluation of the reliability of the proposed approach was performed. In detail, texts of juridical documents written in Italian were analyzed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2021
- DetailsMarulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
Abstract
Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International. - DetailsMarulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
Abstract
Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
2025
- DetailsCampanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
Abstract
The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
2024
- DetailsMarulli, F., Campanile, L., de Biase, M. S., Marrone, S., Verde, L., & Bifulco, M. (2024). Understanding Readability of Large Language Models Output: An Empirical Analysis [Conference paper]. Procedia Computer Science, 246(C), 5273–5282. https://doi.org/10.1016/j.procs.2024.09.636
Abstract
Recently, Large Language Models (LLMs) have seen some impressive leaps, achieving the ability to accomplish several tasks, from text completion to powerful chatbots. The great variety of available LLMs and the fast pace of technological innovations in this field, is making LLM assessment a hard task to accomplish: understanding not only what such a kind of systems generate but also which is the quality of their results is of a paramount importance. Generally, the quality of a synthetically generated object could refer to the reliability of the content, to the lexical variety or coherence of the text. Regarding the quality of text generation, an aspect that up to now has not been adequately discussed is concerning the readability of textual artefacts. This work focuses on the latter aspect, proposing a set of experiments aiming to better understanding and evaluating the degree of readability of texts automatically generated by an LLM. The analysis is performed through an empirical study based on: considering a subset of five pre-trained LLMs; considering a pool of English text generation tasks, with increasing difficulty, assigned to each of the models; and, computing a set of the most popular readability indexes available from the computational linguistics literature. Readability indexes will be computed for each model to provide a first perspective of the readability of textual contents artificially generated can vary among different models and under different requirements of the users. The results obtained by evaluating and comparing different models provide interesting insights, especially into the responsible use of these tools by both beginners and not overly experienced practitioners. © 2024 The Authors. - DetailsCampanile, L., De Fazio, R., Di Giovanni, M., & Marulli, F. (2024). Beyond the Hype: Toward a Concrete Adoption of the Fair and Responsible Use of AI [Conference paper]. CEUR Workshop Proceedings, 3762, 60–65. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205601768&partnerID=40&md5=99140624de79e37b370ed4cf816c24e7
Abstract
Artificial Intelligence (AI) is a fast-changing technology that is having a profound impact on our society, from education to industry. Its applications cover a wide range of areas, such as medicine, military, engineering and research. The emergence of AI and Generative AI have significant potential to transform society, but they also raise concerns about transparency, privacy, ownership, fair use, reliability, and ethical considerations. The Generative AI adds complexity to the existing problems of AI due to its ability to create machine-generated data that is barely distinguishable from human-generated data. Bringing to the forefront the issue of responsible and fair use of AI. The security, safety and privacy implications are enormous, and the risks associated with inappropriate use of these technologies are real. Although some governments, such as the European Union and the United States, have begun to address the problem with recommendations and proposed regulations, it is probably not enough. Regulatory compliance should be seen as a starting point in a continuous process of improving the ethical procedures and privacy risk assessment of AI systems. The need to have a baseline to manage the process of creating an AI system even from an ethics and privacy perspective becomes progressively more important In this study, we discuss the ethical implications of these advances and propose a conceptual framework for the responsible, fair, and safe use of AI. © 2024 Copyright for this paper by its authors.
2023
- DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2022
- DetailsCampanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
Abstract
The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022 - DetailsConference Sensitive Information Detection Adopting Named Entity Recognition: A Proposed MethodologyCampanile, L., de Biase, M. S., Marrone, S., Marulli, F., Raimondo, M., & Verde, L. (2022). Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 377–388. https://doi.org/10.1007/978-3-031-10542-5_26
Abstract
Protecting and safeguarding privacy has become increasingly important, especially in recent years. The increasing possibilities of acquiring and sharing personal information and data through digital devices and platforms, such as apps or social networks, have increased the risks of privacy breaches. In order to effectively respect and guarantee the privacy and protection of sensitive information, it is necessary to develop mechanisms capable of providing such guarantees automatically and reliably. In this paper we propose a methodology able to automatically recognize sensitive data. A Named Entity Recognition was used to identify appropriate entities. An improvement in the recognition of these entities is achieved by evaluating the words contained in an appropriate context window by assessing their similarity to words in a domain taxonomy. This, in fact, makes it possible to refine the labels of the recognized categories using a generic Named Entity Recognition. A preliminary evaluation of the reliability of the proposed approach was performed. In detail, texts of juridical documents written in Italian were analyzed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2021
- DetailsMarulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
Abstract
Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International. - DetailsMarulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
Abstract
Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
