Topic: Software design
Published:
2023
- DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsDi Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
Abstract
In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2022
- DetailsCampanile, L., Iacono, M., & Mastroianni, M. (2022). Towards privacy-aware software design in small and medium enterprises. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927958
Abstract
The legal definition of privacy regulations, like GDPR in the European Union, significantly impacted on the way in which software, systems and organizations should be designed or maintained to be compliant to rules. While the privacy community stated proper risk assessment and mitigation approaches to be applied, literature seems to suggest that the software engineering community, with special reference to companies, did actually concentrate on the specification phase, with less attention for the test phase of products. In coherence with the privacy-by-design approach, we believe that a bigger methodological effort must be put in the systematic adaptation of software development cycles to privacy regulations, and that this effort might be promoted in the industrial community by focusing on the relation between organizational costs vs technical features, also leveraging the benefits of targeted testing as a mean to lower operational privacy enforcement costs. © 2022 IEEE. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2020
- DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE. - DetailsCampanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
Abstract
The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.
2019
- DetailsCampanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
Abstract
Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s).
2023
- DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsDi Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
Abstract
In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2022
- DetailsCampanile, L., Iacono, M., & Mastroianni, M. (2022). Towards privacy-aware software design in small and medium enterprises. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927958
Abstract
The legal definition of privacy regulations, like GDPR in the European Union, significantly impacted on the way in which software, systems and organizations should be designed or maintained to be compliant to rules. While the privacy community stated proper risk assessment and mitigation approaches to be applied, literature seems to suggest that the software engineering community, with special reference to companies, did actually concentrate on the specification phase, with less attention for the test phase of products. In coherence with the privacy-by-design approach, we believe that a bigger methodological effort must be put in the systematic adaptation of software development cycles to privacy regulations, and that this effort might be promoted in the industrial community by focusing on the relation between organizational costs vs technical features, also leveraging the benefits of targeted testing as a mean to lower operational privacy enforcement costs. © 2022 IEEE. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2020
- DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE. - DetailsCampanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
Abstract
The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.
2019
- DetailsCampanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
Abstract
Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s).
