Topic: Ships

Published:

# Topic: Ships

Cargo ships Diesel engines Fleet operations Freight movement Marine engines Marine scrubber Scrubbers Ships Vehicles

2025

  1. Di Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
    Abstract
    This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
    DOI Publisher Details
    Details

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  2. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
    Abstract
    Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd
    DOI Publisher Details
    Details

← Back to all publications

2025

  1. Di Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
    Abstract
    This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
    DOI Publisher Details
    Details

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  2. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
    Abstract
    Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd
    DOI Publisher Details
    Details

← Back to all publications