Topic: Routers
Published:
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V. - DetailsCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
Abstract
Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd - DetailsJournal Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to workCampanile, L., Iacono, M., Levis, A. H., Marulli, F., & Mastroianni, M. (2021). Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to work [Article]. IEEE Security and Privacy, 19(1), 34–43. https://doi.org/10.1109/MSEC.2020.3012059
Abstract
Smart streets promise widely available traffic information to help improve people’s safety. Unfortunately, gathering that data may threaten privacy. We describe an architecture that exploits a blockchain and the Internet of Vehicles and show its compliance with the General Data Protection Regulation. © 2003-2012 IEEE. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2021). Hybrid Simulation of Energy Management in IoT Edge Computing Surveillance Systems [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13104 LNCS, 345–359. https://doi.org/10.1007/978-3-030-91825-5_21
Abstract
Internet of Things (IoT) is a well established approach used for the implementation of surveillance systems that are suitable for monitoring large portions of territory. Current developments allow the design of battery powered IoT nodes that can communicate over the network with low energy requirements and locally perform some computing and coordination task, besides running sensing and related processing: it is thus possible to implement edge computing oriented solutions on IoT, if the design encompasses both hardware and software elements in terms of sensing, processing, computing, communications and routing energy costs as one of the quality indices of the system. In this paper we propose a modeling approach for edge computing IoT-based monitoring systems energy related characteristics, suitable for the analysis of energy levels of large battery powered monitoring systems with dynamic and reactive computing workloads. © 2021, Springer Nature Switzerland AG. - DetailsCampanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
Abstract
Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG.
2020
- DetailsConference Privacy regulations challenges on data-centric and iot systems: A case study for smart vehiclesCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Privacy regulations challenges on data-centric and iot systems: A case study for smart vehicles [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 507–520. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089476036&partnerID=40&md5=c18dd73c221ec312a330521bf03d332e
Abstract
Internet of Things (IoTs) services and data-centric systems allow smart and efficient information exchanging. Anyway, even if existing IoTs and cyber security architectures are enforcing, they are still vulnerable to security issues, as unauthorized access, data breaches, intrusions. They can’t provide yet sufficiently robust and secure solutions to be applied in a straightforward way, both for ensuring privacy preservation and trustworthiness of transmitted data, evenly preventing from its fraudulent and unauthorized usage. Such data potentially include critical information about persons’ privacy (locations, visited places, behaviors, goods, anagraphic data and health conditions). So, novel approaches for IoTs and data-centric security are needed. In this work, we address IoTs systems security problem focusing on the privacy preserving issue. Indeed, after the European Union introduced the General Data Protection Regulation (GDPR), privacy data protection is a mandatory requirement for systems producing and managing sensible users’ data. Starting from a case study for the Internet of Vehicles (IoVs), we performed a pilot study and DPIA assessment to analyze possible mitigation strategies for improving the compliance of IoTs based systems to GDPR requirements. Our preliminary results evidenced that the introduction of blockchains in IoTs systems architectures can improve significantly the compliance to privacy regulations. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
Abstract
Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther. - DetailsCampanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
Abstract
The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2019
- DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V. - DetailsCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
Abstract
Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd - DetailsJournal Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to workCampanile, L., Iacono, M., Levis, A. H., Marulli, F., & Mastroianni, M. (2021). Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to work [Article]. IEEE Security and Privacy, 19(1), 34–43. https://doi.org/10.1109/MSEC.2020.3012059
Abstract
Smart streets promise widely available traffic information to help improve people’s safety. Unfortunately, gathering that data may threaten privacy. We describe an architecture that exploits a blockchain and the Internet of Vehicles and show its compliance with the General Data Protection Regulation. © 2003-2012 IEEE. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2021). Hybrid Simulation of Energy Management in IoT Edge Computing Surveillance Systems [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13104 LNCS, 345–359. https://doi.org/10.1007/978-3-030-91825-5_21
Abstract
Internet of Things (IoT) is a well established approach used for the implementation of surveillance systems that are suitable for monitoring large portions of territory. Current developments allow the design of battery powered IoT nodes that can communicate over the network with low energy requirements and locally perform some computing and coordination task, besides running sensing and related processing: it is thus possible to implement edge computing oriented solutions on IoT, if the design encompasses both hardware and software elements in terms of sensing, processing, computing, communications and routing energy costs as one of the quality indices of the system. In this paper we propose a modeling approach for edge computing IoT-based monitoring systems energy related characteristics, suitable for the analysis of energy levels of large battery powered monitoring systems with dynamic and reactive computing workloads. © 2021, Springer Nature Switzerland AG. - DetailsCampanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
Abstract
Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG.
2020
- DetailsConference Privacy regulations challenges on data-centric and iot systems: A case study for smart vehiclesCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Privacy regulations challenges on data-centric and iot systems: A case study for smart vehicles [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 507–520. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089476036&partnerID=40&md5=c18dd73c221ec312a330521bf03d332e
Abstract
Internet of Things (IoTs) services and data-centric systems allow smart and efficient information exchanging. Anyway, even if existing IoTs and cyber security architectures are enforcing, they are still vulnerable to security issues, as unauthorized access, data breaches, intrusions. They can’t provide yet sufficiently robust and secure solutions to be applied in a straightforward way, both for ensuring privacy preservation and trustworthiness of transmitted data, evenly preventing from its fraudulent and unauthorized usage. Such data potentially include critical information about persons’ privacy (locations, visited places, behaviors, goods, anagraphic data and health conditions). So, novel approaches for IoTs and data-centric security are needed. In this work, we address IoTs systems security problem focusing on the privacy preserving issue. Indeed, after the European Union introduced the General Data Protection Regulation (GDPR), privacy data protection is a mandatory requirement for systems producing and managing sensible users’ data. Starting from a case study for the Internet of Vehicles (IoVs), we performed a pilot study and DPIA assessment to analyze possible mitigation strategies for improving the compliance of IoTs based systems to GDPR requirements. Our preliminary results evidenced that the introduction of blockchains in IoTs systems architectures can improve significantly the compliance to privacy regulations. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
Abstract
Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther. - DetailsCampanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
Abstract
The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2019
- DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
