Topic: Regression
Published:
2025
- DetailsDi Giovanni, M., Verde, L., Campanile, L., Romoli, M., Sabbarese, C., & Marrone, S. (2025). Assessing Safety and Sustainability of a Monitoring System for Nuclear Waste Management [Article]. IEEE Access, 13, 120486–120505. https://doi.org/10.1109/ACCESS.2025.3586735
Abstract
Nowadays, nuclear technologies are increasingly being integrated into industry, healthcare and manufacturing. As a side effect, waste materials are produced according to standard processes which are subject to international regulations. One of the most critical phases is the pre-disposal, due to the uncertainty related to the evolution of the materials and their potential impact on environmental protection. This paper introduces the architecture of a monitoring system able to accomplish safety goals and to guarantee energetic sustainability. The possibility of defining different system configurations (e. g., sensor scheduling policies, geometry of the sites, trustworthiness of the sensors) fosters a high adaptability to several monitoring scenarios, being characterised by different safety and sustainability levels. A methodology, integrating a model-based approach with data collection and processing, is proposed to quantitatively evaluate system configurations. This methodology is based on the definition of two metrics — one for safety and one for sustainability — and an assessment model. The model computes the metrics considering geometry of the place, scheduling and trustworthiness of monitoring sensors. This is a first step in the construction of a Decision Support System able to aid human operators in assessing system configurations and finding possible safety/sustainability trade-offs. A case study is used to show the feasibility of the approach: some configurations are evaluated on the real plant, placed at Řež in the Czech Republic, assessing them on the base of the defined metrics. © 2025 The Authors. - DetailsDi Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
Abstract
This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
2024
- DetailsVerde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
Abstract
Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s) - DetailsCampanile, L., Di Bonito, L. P., Natale, F. D., & Iacono, M. (2024). Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 38(1), 558–564. https://doi.org/10.7148/2024-0558
Abstract
Monitoring of non-linear phenomena, such as pollution dynamics, which is the result of several combined factors and the evolution of environmental conditions, greatly benefits by AI tools; a larger benefit derives by the application of explainable solutions, which are capable of providing elements to understand those dynamics for better informed decisions. In this paper we discuss a case with real data in which a posteriori explanations have been produced after the application of ensemble models. © ECMS Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev (Editors) 2024.
2023
- DetailsDi Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
Abstract
This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V. - DetailsCampanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
Abstract
Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG. - DetailsCampanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
Abstract
Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
2025
- DetailsDi Giovanni, M., Verde, L., Campanile, L., Romoli, M., Sabbarese, C., & Marrone, S. (2025). Assessing Safety and Sustainability of a Monitoring System for Nuclear Waste Management [Article]. IEEE Access, 13, 120486–120505. https://doi.org/10.1109/ACCESS.2025.3586735
Abstract
Nowadays, nuclear technologies are increasingly being integrated into industry, healthcare and manufacturing. As a side effect, waste materials are produced according to standard processes which are subject to international regulations. One of the most critical phases is the pre-disposal, due to the uncertainty related to the evolution of the materials and their potential impact on environmental protection. This paper introduces the architecture of a monitoring system able to accomplish safety goals and to guarantee energetic sustainability. The possibility of defining different system configurations (e. g., sensor scheduling policies, geometry of the sites, trustworthiness of the sensors) fosters a high adaptability to several monitoring scenarios, being characterised by different safety and sustainability levels. A methodology, integrating a model-based approach with data collection and processing, is proposed to quantitatively evaluate system configurations. This methodology is based on the definition of two metrics — one for safety and one for sustainability — and an assessment model. The model computes the metrics considering geometry of the place, scheduling and trustworthiness of monitoring sensors. This is a first step in the construction of a Decision Support System able to aid human operators in assessing system configurations and finding possible safety/sustainability trade-offs. A case study is used to show the feasibility of the approach: some configurations are evaluated on the real plant, placed at Řež in the Czech Republic, assessing them on the base of the defined metrics. © 2025 The Authors. - DetailsDi Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
Abstract
This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
2024
- DetailsVerde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
Abstract
Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s) - DetailsCampanile, L., Di Bonito, L. P., Natale, F. D., & Iacono, M. (2024). Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 38(1), 558–564. https://doi.org/10.7148/2024-0558
Abstract
Monitoring of non-linear phenomena, such as pollution dynamics, which is the result of several combined factors and the evolution of environmental conditions, greatly benefits by AI tools; a larger benefit derives by the application of explainable solutions, which are capable of providing elements to understand those dynamics for better informed decisions. In this paper we discuss a case with real data in which a posteriori explanations have been produced after the application of ensemble models. © ECMS Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev (Editors) 2024.
2023
- DetailsDi Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
Abstract
This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V. - DetailsCampanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
Abstract
Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG. - DetailsCampanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
Abstract
Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
