Topic: Push forwards
Published:
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsCampanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
Abstract
Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
2022
- DetailsCampanile, L., Cesarano, M., Palmiero, G., & Sanghez, C. (2022). Break the Fake: A Technical Report on Browsing Behavior During the Pandemic [Conference paper]. Smart Innovation, Systems and Technologies, 309, 573–586. https://doi.org/10.1007/978-981-19-3444-5_49
Abstract
The widespread use of the internet as the main source of information for many users has led to the spread of fake news and misleading information as a side effect. The pandemic that in the last 2 years has forced us to change our lifestyle and to increase the time spent at home, has further increased the time spent surfing the Internet. In this work we analyze the navigation logs of a sample of users, in compliance with the current privacy regulation, comparing and dividing between the different categories of target sites, also identifying some well-known sites that spread fake news. The results of the report show that during the most acute periods of the pandemic there was an increase in surfing on untrusted sites. The report also shows the tendency to use such sites in the evening and night hours and highlights the differences between the different years considered. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. - DetailsVerde, L., Campanile, L., Marulli, F., & Marrone, S. (2022). Speech-based Evaluation of Emotions-Depression Correlation. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927758
Abstract
Early detection of depression symptoms is fundamental to limit the onset of further associated behavioural disorders, such as psychomotor or social withdrawal. The combination of Artificial Intelligence and speech analysis revealed the existence of objectively measurable physical manifestations for early detection of depressive symptoms, constituting a valid support to evaluate these signals. To push forward the research state-of-art, this aim of this paper is to understand quantitative correlations between emotional states and depression by proposing a study across different datasets containing speech of both depressed/non-depressed people and emotional-related samples. The relationship between affective measures and depression can, in fact, a support to evaluate the presence of depression state. This work constitutes a preliminary step of a study whose final aim is to pursue AI-powered personalized medicine by building sophisticated Clinical Decision Support Systems for depression, as well as other psychological disorders. © 2022 IEEE. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsCampanile, L., Iacono, M., Marrone, S., & Mastroianni, M. (2020). On Performance Evaluation of Security Monitoring in Multitenant Cloud Applications [Article]. Electronic Notes in Theoretical Computer Science, 353, 107–127. https://doi.org/10.1016/j.entcs.2020.09.020
Abstract
In this paper we present a modeling approach suitable for practical evaluation of the delays that may affect security monitoring systems in (multitenant) cloud based architecture, and in general to support professionals in planning and evaluating relevant parameters in dealing with new designs or migration projects. The approach is based on modularity and multiformalism techniques to manage complexity and guide designers in an incremental process, to help transferring technical knowledge into modeling practice and to help easing the use of simulation. We present a case study based on a real experience, triggered by a new legal requirement that Italian Public Administration should comply about their datacenters. © 2020 The Author(s) - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsCampanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
Abstract
Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
2022
- DetailsCampanile, L., Cesarano, M., Palmiero, G., & Sanghez, C. (2022). Break the Fake: A Technical Report on Browsing Behavior During the Pandemic [Conference paper]. Smart Innovation, Systems and Technologies, 309, 573–586. https://doi.org/10.1007/978-981-19-3444-5_49
Abstract
The widespread use of the internet as the main source of information for many users has led to the spread of fake news and misleading information as a side effect. The pandemic that in the last 2 years has forced us to change our lifestyle and to increase the time spent at home, has further increased the time spent surfing the Internet. In this work we analyze the navigation logs of a sample of users, in compliance with the current privacy regulation, comparing and dividing between the different categories of target sites, also identifying some well-known sites that spread fake news. The results of the report show that during the most acute periods of the pandemic there was an increase in surfing on untrusted sites. The report also shows the tendency to use such sites in the evening and night hours and highlights the differences between the different years considered. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. - DetailsVerde, L., Campanile, L., Marulli, F., & Marrone, S. (2022). Speech-based Evaluation of Emotions-Depression Correlation. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927758
Abstract
Early detection of depression symptoms is fundamental to limit the onset of further associated behavioural disorders, such as psychomotor or social withdrawal. The combination of Artificial Intelligence and speech analysis revealed the existence of objectively measurable physical manifestations for early detection of depressive symptoms, constituting a valid support to evaluate these signals. To push forward the research state-of-art, this aim of this paper is to understand quantitative correlations between emotional states and depression by proposing a study across different datasets containing speech of both depressed/non-depressed people and emotional-related samples. The relationship between affective measures and depression can, in fact, a support to evaluate the presence of depression state. This work constitutes a preliminary step of a study whose final aim is to pursue AI-powered personalized medicine by building sophisticated Clinical Decision Support Systems for depression, as well as other psychological disorders. © 2022 IEEE. - DetailsCampanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
Abstract
A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsCampanile, L., Iacono, M., Marrone, S., & Mastroianni, M. (2020). On Performance Evaluation of Security Monitoring in Multitenant Cloud Applications [Article]. Electronic Notes in Theoretical Computer Science, 353, 107–127. https://doi.org/10.1016/j.entcs.2020.09.020
Abstract
In this paper we present a modeling approach suitable for practical evaluation of the delays that may affect security monitoring systems in (multitenant) cloud based architecture, and in general to support professionals in planning and evaluating relevant parameters in dealing with new designs or migration projects. The approach is based on modularity and multiformalism techniques to manage complexity and guide designers in an incremental process, to help transferring technical knowledge into modeling practice and to help easing the use of simulation. We present a case study based on a real experience, triggered by a new legal requirement that Italian Public Administration should comply about their datacenters. © 2020 The Author(s) - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
