Topic: Plant designs

Published:

# Topic: Plant designs

Chemical analysis Chemical equipment Chemical plants Heterogeneous sources Industrial communities Industrial plants Plant designs Plant operations

2025

  1. Napoli, F., Campanile, L., De Gregorio, G., & Marrone, S. (2025). Quantum Convolutional Neural Networks for Image Classification: Perspectives and Challenges [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 509–516. https://doi.org/10.5220/0013521500003944
    Abstract
    Quantum Computing is becoming a central point of discussion in both academic and industrial communities. Quantum Machine Learning is one of the most promising subfields of this technology, in particular for image classification. In this paper, the model of Quantum Convolutional Neural Networks and some related implementations are explored in their potential for a non-trivial task of image classification. The paper presents some experimentations and discusses the limitations and the strengths of these approaches when compared with classical Convolutional Neural Networks. Furthermore, an analysis of the impact of the noise level on the quality of the classification task has been performed. This paper reports a substantial equivalence of the perfomance of the model with respect the level of noise. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2023

  1. Campanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
    Abstract
    Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
    DOI Publisher Details
    Details
  2. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  3. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  2. Marulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
    Abstract
    Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
    DOI Publisher Details
    Details

← Back to all publications

2025

  1. Napoli, F., Campanile, L., De Gregorio, G., & Marrone, S. (2025). Quantum Convolutional Neural Networks for Image Classification: Perspectives and Challenges [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 509–516. https://doi.org/10.5220/0013521500003944
    Abstract
    Quantum Computing is becoming a central point of discussion in both academic and industrial communities. Quantum Machine Learning is one of the most promising subfields of this technology, in particular for image classification. In this paper, the model of Quantum Convolutional Neural Networks and some related implementations are explored in their potential for a non-trivial task of image classification. The paper presents some experimentations and discusses the limitations and the strengths of these approaches when compared with classical Convolutional Neural Networks. Furthermore, an analysis of the impact of the noise level on the quality of the classification task has been performed. This paper reports a substantial equivalence of the perfomance of the model with respect the level of noise. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2023

  1. Campanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
    Abstract
    Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
    DOI Publisher Details
    Details
  2. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  3. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  2. Marulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
    Abstract
    Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
    DOI Publisher Details
    Details

← Back to all publications