Topic: Petri nets
Published:
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2025
- DetailsDi Giovanni, M., Verde, L., Campanile, L., Romoli, M., Sabbarese, C., & Marrone, S. (2025). Assessing Safety and Sustainability of a Monitoring System for Nuclear Waste Management [Article]. IEEE Access, 13, 120486–120505. https://doi.org/10.1109/ACCESS.2025.3586735
Abstract
Nowadays, nuclear technologies are increasingly being integrated into industry, healthcare and manufacturing. As a side effect, waste materials are produced according to standard processes which are subject to international regulations. One of the most critical phases is the pre-disposal, due to the uncertainty related to the evolution of the materials and their potential impact on environmental protection. This paper introduces the architecture of a monitoring system able to accomplish safety goals and to guarantee energetic sustainability. The possibility of defining different system configurations (e. g., sensor scheduling policies, geometry of the sites, trustworthiness of the sensors) fosters a high adaptability to several monitoring scenarios, being characterised by different safety and sustainability levels. A methodology, integrating a model-based approach with data collection and processing, is proposed to quantitatively evaluate system configurations. This methodology is based on the definition of two metrics — one for safety and one for sustainability — and an assessment model. The model computes the metrics considering geometry of the place, scheduling and trustworthiness of monitoring sensors. This is a first step in the construction of a Decision Support System able to aid human operators in assessing system configurations and finding possible safety/sustainability trade-offs. A case study is used to show the feasibility of the approach: some configurations are evaluated on the real plant, placed at Řež in the Czech Republic, assessing them on the base of the defined metrics. © 2025 The Authors. - DetailsCampanile, L., Iacono, M., Mastroianni, M., & Riccio, C. (2025). Performance Evaluation of an Edge-Blockchain Architecture for Smart City [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2025-June, 620–627. https://doi.org/10.7148/2025-0620
Abstract
This paper presents a simulation-based methodology to evaluate the performance of a privacy-compliant edge-blockchain architecture for smart city environments. The proposed model combines edge computing with a private, permissioned blockchain to ensure low-latency processing, secure data management, and verifiable transactions. Using a discrete-event simulation framework, we analyze the behavior of the system under realistic workloads and time-varying traffic conditions. The model captures edge operations, including preprocessing and cryptographic tasks, as well as blockchain validation using Proof of Stake consensus. Several experiments explore saturation thresholds, resource utilization, and latency dynamics, under both synthetic and realistic traffic profiles. Results reveal how architectural bottlenecks shift depending on resource allocation and input rate, and demonstrate the importance of balanced dimensioning between edge and blockchain layers. © ECMS Marco Scarpa, Salvatore Cavalieri, Salvatore Serrano, Fabrizio De Vita (Editors) 2025.
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsMarrone, S., Campanile, L., De Fazio, R., Di Giovanni, M., Gentile, U., Marulli, F., & Verde, L. (2023). A Petri net oriented approach for advanced building energy management systems [Article]. Journal of Ambient Intelligence and Smart Environments, 15(3), 211–233. https://doi.org/10.3233/AIS-230065
Abstract
Sustainability is one of the main goals to pursue in several aspects of everyday life; the recent energy shortage and the price raise worsen this problem, especially in the management of energy in buildings. As the Internet of Things (IoT) is an assessed computing paradigm able to capture meaningful data from the field and send them to cloud infrastructures, other approaches are also enabled, namely model-based approaches. These methods can be used to predict functional and non-functional properties of Building Energy Management Systems (BEMS) before setting up them. This paper aims at bridging the gap between model-based approaches and physical realizations of sensing and small computing devices. Through an integrated approach, able to exploit the power of different dialects of Petri Nets, this paper proposes a methodology for the early evaluation of BEMS properties as well as the automatic generation of IoT controllers. © 2023 - IOS Press. All rights reserved. - DetailsConference Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins DesignCampanile, L., De Biase, M. S., De Fazio, R., Di Giovanni, M., Marulli, F., & Verde, L. (2023). Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins Design [Conference paper]. Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023, 301–306. https://doi.org/10.1109/CSR57506.2023.10224945
Abstract
Nowadays, the problem of system robustness, es-pecially in critical infrastructures, is a challenging open question. Some systems provide crucial services continuously failing, threatening the availability of the provided services. By designing a robust architecture, this criticality could be overcome or limited, ensuring service continuity. The definition of a resilient system involves not only its architecture but also the methodology implemented for the calculation and analysis of some indices, quantifying system performance. This study provides an innovative architecture for Digital Twins implementation based on a hybrid methodology for improving the control system in realtime. The introduced approach brings together different techniques. In particular, the work combines the point of strengths of Model-based methods and Data-driven ones, aiming to improve system performances. © 2023 IEEE.
2022
- DetailsCampanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
Abstract
The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. - DetailsCampanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
Abstract
The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd. - DetailsConference Privacy regulations challenges on data-centric and iot systems: A case study for smart vehiclesCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Privacy regulations challenges on data-centric and iot systems: A case study for smart vehicles [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 507–520. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089476036&partnerID=40&md5=c18dd73c221ec312a330521bf03d332e
Abstract
Internet of Things (IoTs) services and data-centric systems allow smart and efficient information exchanging. Anyway, even if existing IoTs and cyber security architectures are enforcing, they are still vulnerable to security issues, as unauthorized access, data breaches, intrusions. They can’t provide yet sufficiently robust and secure solutions to be applied in a straightforward way, both for ensuring privacy preservation and trustworthiness of transmitted data, evenly preventing from its fraudulent and unauthorized usage. Such data potentially include critical information about persons’ privacy (locations, visited places, behaviors, goods, anagraphic data and health conditions). So, novel approaches for IoTs and data-centric security are needed. In this work, we address IoTs systems security problem focusing on the privacy preserving issue. Indeed, after the European Union introduced the General Data Protection Regulation (GDPR), privacy data protection is a mandatory requirement for systems producing and managing sensible users’ data. Starting from a case study for the Internet of Vehicles (IoVs), we performed a pilot study and DPIA assessment to analyze possible mitigation strategies for improving the compliance of IoTs based systems to GDPR requirements. Our preliminary results evidenced that the introduction of blockchains in IoTs systems architectures can improve significantly the compliance to privacy regulations. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2019
- DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2025
- DetailsDi Giovanni, M., Verde, L., Campanile, L., Romoli, M., Sabbarese, C., & Marrone, S. (2025). Assessing Safety and Sustainability of a Monitoring System for Nuclear Waste Management [Article]. IEEE Access, 13, 120486–120505. https://doi.org/10.1109/ACCESS.2025.3586735
Abstract
Nowadays, nuclear technologies are increasingly being integrated into industry, healthcare and manufacturing. As a side effect, waste materials are produced according to standard processes which are subject to international regulations. One of the most critical phases is the pre-disposal, due to the uncertainty related to the evolution of the materials and their potential impact on environmental protection. This paper introduces the architecture of a monitoring system able to accomplish safety goals and to guarantee energetic sustainability. The possibility of defining different system configurations (e. g., sensor scheduling policies, geometry of the sites, trustworthiness of the sensors) fosters a high adaptability to several monitoring scenarios, being characterised by different safety and sustainability levels. A methodology, integrating a model-based approach with data collection and processing, is proposed to quantitatively evaluate system configurations. This methodology is based on the definition of two metrics — one for safety and one for sustainability — and an assessment model. The model computes the metrics considering geometry of the place, scheduling and trustworthiness of monitoring sensors. This is a first step in the construction of a Decision Support System able to aid human operators in assessing system configurations and finding possible safety/sustainability trade-offs. A case study is used to show the feasibility of the approach: some configurations are evaluated on the real plant, placed at Řež in the Czech Republic, assessing them on the base of the defined metrics. © 2025 The Authors. - DetailsCampanile, L., Iacono, M., Mastroianni, M., & Riccio, C. (2025). Performance Evaluation of an Edge-Blockchain Architecture for Smart City [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2025-June, 620–627. https://doi.org/10.7148/2025-0620
Abstract
This paper presents a simulation-based methodology to evaluate the performance of a privacy-compliant edge-blockchain architecture for smart city environments. The proposed model combines edge computing with a private, permissioned blockchain to ensure low-latency processing, secure data management, and verifiable transactions. Using a discrete-event simulation framework, we analyze the behavior of the system under realistic workloads and time-varying traffic conditions. The model captures edge operations, including preprocessing and cryptographic tasks, as well as blockchain validation using Proof of Stake consensus. Several experiments explore saturation thresholds, resource utilization, and latency dynamics, under both synthetic and realistic traffic profiles. Results reveal how architectural bottlenecks shift depending on resource allocation and input rate, and demonstrate the importance of balanced dimensioning between edge and blockchain layers. © ECMS Marco Scarpa, Salvatore Cavalieri, Salvatore Serrano, Fabrizio De Vita (Editors) 2025.
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsMarrone, S., Campanile, L., De Fazio, R., Di Giovanni, M., Gentile, U., Marulli, F., & Verde, L. (2023). A Petri net oriented approach for advanced building energy management systems [Article]. Journal of Ambient Intelligence and Smart Environments, 15(3), 211–233. https://doi.org/10.3233/AIS-230065
Abstract
Sustainability is one of the main goals to pursue in several aspects of everyday life; the recent energy shortage and the price raise worsen this problem, especially in the management of energy in buildings. As the Internet of Things (IoT) is an assessed computing paradigm able to capture meaningful data from the field and send them to cloud infrastructures, other approaches are also enabled, namely model-based approaches. These methods can be used to predict functional and non-functional properties of Building Energy Management Systems (BEMS) before setting up them. This paper aims at bridging the gap between model-based approaches and physical realizations of sensing and small computing devices. Through an integrated approach, able to exploit the power of different dialects of Petri Nets, this paper proposes a methodology for the early evaluation of BEMS properties as well as the automatic generation of IoT controllers. © 2023 - IOS Press. All rights reserved. - DetailsConference Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins DesignCampanile, L., De Biase, M. S., De Fazio, R., Di Giovanni, M., Marulli, F., & Verde, L. (2023). Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins Design [Conference paper]. Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023, 301–306. https://doi.org/10.1109/CSR57506.2023.10224945
Abstract
Nowadays, the problem of system robustness, es-pecially in critical infrastructures, is a challenging open question. Some systems provide crucial services continuously failing, threatening the availability of the provided services. By designing a robust architecture, this criticality could be overcome or limited, ensuring service continuity. The definition of a resilient system involves not only its architecture but also the methodology implemented for the calculation and analysis of some indices, quantifying system performance. This study provides an innovative architecture for Digital Twins implementation based on a hybrid methodology for improving the control system in realtime. The introduced approach brings together different techniques. In particular, the work combines the point of strengths of Model-based methods and Data-driven ones, aiming to improve system performances. © 2023 IEEE.
2022
- DetailsCampanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
Abstract
The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. - DetailsCampanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
Abstract
The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd. - DetailsConference Privacy regulations challenges on data-centric and iot systems: A case study for smart vehiclesCampanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Privacy regulations challenges on data-centric and iot systems: A case study for smart vehicles [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 507–520. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089476036&partnerID=40&md5=c18dd73c221ec312a330521bf03d332e
Abstract
Internet of Things (IoTs) services and data-centric systems allow smart and efficient information exchanging. Anyway, even if existing IoTs and cyber security architectures are enforcing, they are still vulnerable to security issues, as unauthorized access, data breaches, intrusions. They can’t provide yet sufficiently robust and secure solutions to be applied in a straightforward way, both for ensuring privacy preservation and trustworthiness of transmitted data, evenly preventing from its fraudulent and unauthorized usage. Such data potentially include critical information about persons’ privacy (locations, visited places, behaviors, goods, anagraphic data and health conditions). So, novel approaches for IoTs and data-centric security are needed. In this work, we address IoTs systems security problem focusing on the privacy preserving issue. Indeed, after the European Union introduced the General Data Protection Regulation (GDPR), privacy data protection is a mandatory requirement for systems producing and managing sensible users’ data. Starting from a case study for the Internet of Vehicles (IoVs), we performed a pilot study and DPIA assessment to analyze possible mitigation strategies for improving the compliance of IoTs based systems to GDPR requirements. Our preliminary results evidenced that the introduction of blockchains in IoTs systems architectures can improve significantly the compliance to privacy regulations. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2019
- DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
