Topic: Ns-3

Published:

# Topic: Ns-3

Ns-3 Sensor networks Smart sensor networks Temperature sensors Wireless sensor networks Wireless sensors networks WISP

2022

  1. Campanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
    Abstract
    The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Campanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
    Abstract
    Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
    Abstract
    In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
    Abstract
    Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther.
    Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications

2022

  1. Campanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
    Abstract
    The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Campanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
    Abstract
    Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
    Abstract
    In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
    Abstract
    Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther.
    Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications