Topic: Maintenance
Published:
2025
- DetailsCampanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
Abstract
The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
2023
- DetailsDi Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
Abstract
In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE.
2025
- DetailsCampanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
Abstract
The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
2023
- DetailsDi Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
Abstract
In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2021
- DetailsBarbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
Abstract
The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
2020
- DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE.
