Topic: Low latency
Published:
2026
- DetailsCampanile, L., Iacono, M., Mastroianni, M., Riccio, C., & Viscardi, B. (2026). A TOPSIS-Based Approach to Evaluate Alternative Solutions for GDPR-Compliant Smart-City Services Implementation [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 303–316. https://doi.org/10.1007/978-3-031-97645-2_20
Abstract
Adapting or designing a system which operates on personal data in EU is impacted by the privacy-by-design and privacy-by-default principles because of the prescriptions of the GDPR. In this paper we propose an approach to decision making which is based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The approach is applied to a GDPR system compliance design process, based on a case study about system performance evaluation by means of queuing networks, but is absolutely general with respect to analogous problems, in which cost issues should be balanced with technical performances and risk exposure. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2025
- DetailsCampanile, L., Iacono, M., Mastroianni, M., & Riccio, C. (2025). Performance Evaluation of an Edge-Blockchain Architecture for Smart City [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2025-June, 620–627. https://doi.org/10.7148/2025-0620
Abstract
This paper presents a simulation-based methodology to evaluate the performance of a privacy-compliant edge-blockchain architecture for smart city environments. The proposed model combines edge computing with a private, permissioned blockchain to ensure low-latency processing, secure data management, and verifiable transactions. Using a discrete-event simulation framework, we analyze the behavior of the system under realistic workloads and time-varying traffic conditions. The model captures edge operations, including preprocessing and cryptographic tasks, as well as blockchain validation using Proof of Stake consensus. Several experiments explore saturation thresholds, resource utilization, and latency dynamics, under both synthetic and realistic traffic profiles. Results reveal how architectural bottlenecks shift depending on resource allocation and input rate, and demonstrate the importance of balanced dimensioning between edge and blockchain layers. © ECMS Marco Scarpa, Salvatore Cavalieri, Salvatore Serrano, Fabrizio De Vita (Editors) 2025.
2021
- DetailsCampanile, L., Cantiello, P., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Risk Analysis of a GDPR-Compliant Deletion Technique for Consortium Blockchains Based on Pseudonymization [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12956 LNCS, 3–14. https://doi.org/10.1007/978-3-030-87010-2_1
Abstract
Blockchains provide a valid and profitable support for the implementation of trustable and secure distributed ledgers, in support to groups of subjects that are potentially competitors in conflict of interest but need to share progressive information recording processes. Blockchains prevent data stored in blocks from being altered or deleted, but there are situations in which stored information must be deleted or made inaccessible on request or periodically, such as the ones in which GDPR is applicable. In this paper we present literature solutions and design an implementation in the context of a traffic management system for the Internet of Vehicles based on the Pseudonymization/Cryptography solution, evaluating its viability, its GDPR compliance and its level of risk. © 2021, Springer Nature Switzerland AG. - DetailsMarulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
Abstract
Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
2020
- DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd.
2019
- DetailsCampanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
Abstract
Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s). - DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
2026
- DetailsCampanile, L., Iacono, M., Mastroianni, M., Riccio, C., & Viscardi, B. (2026). A TOPSIS-Based Approach to Evaluate Alternative Solutions for GDPR-Compliant Smart-City Services Implementation [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 303–316. https://doi.org/10.1007/978-3-031-97645-2_20
Abstract
Adapting or designing a system which operates on personal data in EU is impacted by the privacy-by-design and privacy-by-default principles because of the prescriptions of the GDPR. In this paper we propose an approach to decision making which is based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The approach is applied to a GDPR system compliance design process, based on a case study about system performance evaluation by means of queuing networks, but is absolutely general with respect to analogous problems, in which cost issues should be balanced with technical performances and risk exposure. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2025
- DetailsCampanile, L., Iacono, M., Mastroianni, M., & Riccio, C. (2025). Performance Evaluation of an Edge-Blockchain Architecture for Smart City [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2025-June, 620–627. https://doi.org/10.7148/2025-0620
Abstract
This paper presents a simulation-based methodology to evaluate the performance of a privacy-compliant edge-blockchain architecture for smart city environments. The proposed model combines edge computing with a private, permissioned blockchain to ensure low-latency processing, secure data management, and verifiable transactions. Using a discrete-event simulation framework, we analyze the behavior of the system under realistic workloads and time-varying traffic conditions. The model captures edge operations, including preprocessing and cryptographic tasks, as well as blockchain validation using Proof of Stake consensus. Several experiments explore saturation thresholds, resource utilization, and latency dynamics, under both synthetic and realistic traffic profiles. Results reveal how architectural bottlenecks shift depending on resource allocation and input rate, and demonstrate the importance of balanced dimensioning between edge and blockchain layers. © ECMS Marco Scarpa, Salvatore Cavalieri, Salvatore Serrano, Fabrizio De Vita (Editors) 2025.
2021
- DetailsCampanile, L., Cantiello, P., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Risk Analysis of a GDPR-Compliant Deletion Technique for Consortium Blockchains Based on Pseudonymization [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12956 LNCS, 3–14. https://doi.org/10.1007/978-3-030-87010-2_1
Abstract
Blockchains provide a valid and profitable support for the implementation of trustable and secure distributed ledgers, in support to groups of subjects that are potentially competitors in conflict of interest but need to share progressive information recording processes. Blockchains prevent data stored in blocks from being altered or deleted, but there are situations in which stored information must be deleted or made inaccessible on request or periodically, such as the ones in which GDPR is applicable. In this paper we present literature solutions and design an implementation in the context of a traffic management system for the Internet of Vehicles based on the Pseudonymization/Cryptography solution, evaluating its viability, its GDPR compliance and its level of risk. © 2021, Springer Nature Switzerland AG. - DetailsMarulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
Abstract
Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
2020
- DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
Abstract
Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd.
2019
- DetailsCampanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
Abstract
Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s). - DetailsGribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
Abstract
Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
