Topic: Health risks

Published:

# Topic: Health risks

Data protection impact assessments Health risks Liability insurance Model-driven risk assessment Potential impacts Risk analysis Risk analyze Risk assessment Risk management Risks assessments

2026

  1. Campanile, L., Iacono, M., Mastroianni, M., Riccio, C., & Viscardi, B. (2026). A TOPSIS-Based Approach to Evaluate Alternative Solutions for GDPR-Compliant Smart-City Services Implementation [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 303–316. https://doi.org/10.1007/978-3-031-97645-2_20
    Abstract
    Adapting or designing a system which operates on personal data in EU is impacted by the privacy-by-design and privacy-by-default principles because of the prescriptions of the GDPR. In this paper we propose an approach to decision making which is based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The approach is applied to a GDPR system compliance design process, based on a case study about system performance evaluation by means of queuing networks, but is absolutely general with respect to analogous problems, in which cost issues should be balanced with technical performances and risk exposure. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Campanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
    Abstract
    The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2024

  1. Barzegar, A., Campanile, L., Marrone, S., Marulli, F., Verde, L., & Mastroianni, M. (2024). Fuzzy-based Severity Evaluation in Privacy Problems: An Application to Healthcare [Conference paper]. Proceedings - 2024 19th European Dependable Computing Conference, EDCC 2024, 147–154. https://doi.org/10.1109/EDCC61798.2024.00037
    Abstract
    The growing diffusion of smart pervasive applications is starting to mine personal privacy: from Internet of Things to Machine Learning, the opportunities for privacy loss are many. As for other concerns involving people and goods as financial, safety and security, researchers and practitioners have defined in time different risk assessment procedures to have repeatable and accurate ways of detecting, quantifying and managing the (possible) source of privacy loss. This paper defines a methodology to deal with privacy risk assessment, overcoming the traditional dichotomy between qualitative (easy to apply) and quantitative (accurate) approaches. The present paper introduces an approach based on fuzzy logic, able to conjugate the benefits of both techniques. The feasibility of the proposed methodology is demonstrated using a healthcare case study. © 2024 IEEE.
    DOI Publisher Details
    Details

2023

  1. Bobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
    Abstract
    The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI Publisher Details
    Details
  2. Di Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
    Abstract
    In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., & Mastroianni, M. (2022). Towards privacy-aware software design in small and medium enterprises. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927958
    Abstract
    The legal definition of privacy regulations, like GDPR in the European Union, significantly impacted on the way in which software, systems and organizations should be designed or maintained to be compliant to rules. While the privacy community stated proper risk assessment and mitigation approaches to be applied, literature seems to suggest that the software engineering community, with special reference to companies, did actually concentrate on the specification phase, with less attention for the test phase of products. In coherence with the privacy-by-design approach, we believe that a bigger methodological effort must be put in the systematic adaptation of software development cycles to privacy regulations, and that this effort might be promoted in the industrial community by focusing on the relation between organizational costs vs technical features, also leveraging the benefits of targeted testing as a mean to lower operational privacy enforcement costs. © 2022 IEEE.
    DOI Publisher Details
    Details
  2. Campanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
    Abstract
    The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Risk Analysis of a GDPR-Compliant Deletion Technique for Consortium Blockchains Based on Pseudonymization [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12956 LNCS, 3–14. https://doi.org/10.1007/978-3-030-87010-2_1
    Abstract
    Blockchains provide a valid and profitable support for the implementation of trustable and secure distributed ledgers, in support to groups of subjects that are potentially competitors in conflict of interest but need to share progressive information recording processes. Blockchains prevent data stored in blocks from being altered or deleted, but there are situations in which stored information must be deleted or made inaccessible on request or periodically, such as the ones in which GDPR is applicable. In this paper we present literature solutions and design an implementation in the context of a traffic management system for the Internet of Vehicles based on the Pseudonymization/Cryptography solution, evaluating its viability, its GDPR compliance and its level of risk. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Levis, A. H., Marulli, F., & Mastroianni, M. (2021). Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to work [Article]. IEEE Security and Privacy, 19(1), 34–43. https://doi.org/10.1109/MSEC.2020.3012059
    Abstract
    Smart streets promise widely available traffic information to help improve people’s safety. Unfortunately, gathering that data may threaten privacy. We describe an architecture that exploits a blockchain and the Internet of Vehicles and show its compliance with the General Data Protection Regulation. © 2003-2012 IEEE.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
    Abstract
    Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther.
    Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications

2026

  1. Campanile, L., Iacono, M., Mastroianni, M., Riccio, C., & Viscardi, B. (2026). A TOPSIS-Based Approach to Evaluate Alternative Solutions for GDPR-Compliant Smart-City Services Implementation [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 303–316. https://doi.org/10.1007/978-3-031-97645-2_20
    Abstract
    Adapting or designing a system which operates on personal data in EU is impacted by the privacy-by-design and privacy-by-default principles because of the prescriptions of the GDPR. In this paper we propose an approach to decision making which is based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The approach is applied to a GDPR system compliance design process, based on a case study about system performance evaluation by means of queuing networks, but is absolutely general with respect to analogous problems, in which cost issues should be balanced with technical performances and risk exposure. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Campanile, L., Zona, R., Perfetti, A., & Rosatelli, F. (2025). An AI-Driven Methodology for Patent Evaluation in the IoT Sector: Assessing Relevance and Future Impact [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 501–508. https://doi.org/10.5220/0013519700003944
    Abstract
    The rapid expansion of the Internet of Things has led to a surge in patent filings, creating challenges in evaluating their relevance and potential impact. Traditional patent assessment methods, relying on manual review and keyword-based searches, are increasingly inadequate for analyzing the complexity of emerging IoT technologies. In this paper, we propose an AI-driven methodology for patent evaluation that leverages Large Language Models and machine learning techniques to assess patent relevance and estimate future impact. Our framework integrates advanced Natural Language Processing techniques with structured patent metadata to establish a systematic approach to patent analysis. The methodology consists of three key components: (1) feature extraction from patent text using LLM embeddings and conventional NLP methods, (2) relevance classification and clustering to identify emerging technological trends, and (3) an initial formulation of impact estimation based on semantic similarity and citation patterns. While this study focuses primarily on defining the methodology, we include a minimal validation on a sample dataset to illustrate its feasibility and potential. The proposed approach lays the groundwork for a scalable, automated patent evaluation system, with future research directions aimed at refining impact prediction models and expanding empirical validation. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2024

  1. Barzegar, A., Campanile, L., Marrone, S., Marulli, F., Verde, L., & Mastroianni, M. (2024). Fuzzy-based Severity Evaluation in Privacy Problems: An Application to Healthcare [Conference paper]. Proceedings - 2024 19th European Dependable Computing Conference, EDCC 2024, 147–154. https://doi.org/10.1109/EDCC61798.2024.00037
    Abstract
    The growing diffusion of smart pervasive applications is starting to mine personal privacy: from Internet of Things to Machine Learning, the opportunities for privacy loss are many. As for other concerns involving people and goods as financial, safety and security, researchers and practitioners have defined in time different risk assessment procedures to have repeatable and accurate ways of detecting, quantifying and managing the (possible) source of privacy loss. This paper defines a methodology to deal with privacy risk assessment, overcoming the traditional dichotomy between qualitative (easy to apply) and quantitative (accurate) approaches. The present paper introduces an approach based on fuzzy logic, able to conjugate the benefits of both techniques. The feasibility of the proposed methodology is demonstrated using a healthcare case study. © 2024 IEEE.
    DOI Publisher Details
    Details

2023

  1. Bobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
    Abstract
    The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI Publisher Details
    Details
  2. Di Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
    Abstract
    In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., & Mastroianni, M. (2022). Towards privacy-aware software design in small and medium enterprises. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927958
    Abstract
    The legal definition of privacy regulations, like GDPR in the European Union, significantly impacted on the way in which software, systems and organizations should be designed or maintained to be compliant to rules. While the privacy community stated proper risk assessment and mitigation approaches to be applied, literature seems to suggest that the software engineering community, with special reference to companies, did actually concentrate on the specification phase, with less attention for the test phase of products. In coherence with the privacy-by-design approach, we believe that a bigger methodological effort must be put in the systematic adaptation of software development cycles to privacy regulations, and that this effort might be promoted in the industrial community by focusing on the relation between organizational costs vs technical features, also leveraging the benefits of targeted testing as a mean to lower operational privacy enforcement costs. © 2022 IEEE.
    DOI Publisher Details
    Details
  2. Campanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
    Abstract
    The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Risk Analysis of a GDPR-Compliant Deletion Technique for Consortium Blockchains Based on Pseudonymization [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12956 LNCS, 3–14. https://doi.org/10.1007/978-3-030-87010-2_1
    Abstract
    Blockchains provide a valid and profitable support for the implementation of trustable and secure distributed ledgers, in support to groups of subjects that are potentially competitors in conflict of interest but need to share progressive information recording processes. Blockchains prevent data stored in blocks from being altered or deleted, but there are situations in which stored information must be deleted or made inaccessible on request or periodically, such as the ones in which GDPR is applicable. In this paper we present literature solutions and design an implementation in the context of a traffic management system for the Internet of Vehicles based on the Pseudonymization/Cryptography solution, evaluating its viability, its GDPR compliance and its level of risk. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Levis, A. H., Marulli, F., & Mastroianni, M. (2021). Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to work [Article]. IEEE Security and Privacy, 19(1), 34–43. https://doi.org/10.1109/MSEC.2020.3012059
    Abstract
    Smart streets promise widely available traffic information to help improve people’s safety. Unfortunately, gathering that data may threaten privacy. We describe an architecture that exploits a blockchain and the Internet of Vehicles and show its compliance with the General Data Protection Regulation. © 2003-2012 IEEE.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
    Abstract
    Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther.
    Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications