Topic: Cost effective

Published:

# Topic: Cost effective

Additional costs Cost benefit analysis Cost effective Cost effectiveness Cost estimating Resource usage

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  2. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details
  2. Campanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
    Abstract
    The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

← Back to all publications

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  2. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details
  2. Campanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
    Abstract
    The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

← Back to all publications