Topic: Convolution

Published:

# Topic: Convolution

Convolution Convolutional neural network convolutional neural network Convolutional neural networks Deep learning Deep learning vulnerability Deep neural networks Neural networks Quantum convolutional neural network Recurrent neural networks

2026

  1. Napoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
    Abstract
    The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Napoli, F., Campanile, L., De Gregorio, G., & Marrone, S. (2025). Quantum Convolutional Neural Networks for Image Classification: Perspectives and Challenges [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 509–516. https://doi.org/10.5220/0013521500003944
    Abstract
    Quantum Computing is becoming a central point of discussion in both academic and industrial communities. Quantum Machine Learning is one of the most promising subfields of this technology, in particular for image classification. In this paper, the model of Quantum Convolutional Neural Networks and some related implementations are explored in their potential for a non-trivial task of image classification. The paper presents some experimentations and discusses the limitations and the strengths of these approaches when compared with classical Convolutional Neural Networks. Furthermore, an analysis of the impact of the noise level on the quality of the classification task has been performed. This paper reports a substantial equivalence of the perfomance of the model with respect the level of noise. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2024

  1. Verde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
    Abstract
    Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s)
    DOI Publisher Details
    Details

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Marrone, S., Marulli, F., & Verde, L. (2022). Challenges and Trends in Federated Learning for Well-being and Healthcare [Conference paper]. Procedia Computer Science, 207, 1144–1153. https://doi.org/10.1016/j.procs.2022.09.170
    Abstract
    Currently, research in Artificial Intelligence, both in Machine Learning and Deep Learning, paves the way for promising innovations in several areas. In healthcare, especially, where large amounts of quantitative and qualitative data are transferred to support studies and early diagnosis and monitoring of any diseases, potential security and privacy issues cannot be underestimated. Federated learning is an approach where privacy issues related to sensitive data management can be significantly reduced, due to the possibility to train algorithms without exchanging data. The main idea behind this approach is that learning models can be trained in a distributed way, where multiple devices or servers with decentralized data samples can provide their contributions without having to exchange their local data. Recent studies provided evidence that prototypes trained by adopting Federated Learning strategies are able to achieve reliable performance, thus by generating robust models without sharing data and, consequently, limiting the impact on security and privacy. This work propose a literature overview of Federated Learning approaches and systems, focusing on its application for healthcare. The main challenges, implications, issues and potentials of this approach in the healthcare are outlined. © 2022 The Authors. Published by Elsevier B.V.
    DOI Publisher Details
    Details

2021

  1. Marulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
    Abstract
    Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International.
    DOI Publisher Details
    Details
  2. Campanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
    Abstract
    In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  3. Marulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
    Abstract
    Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
    DOI Publisher Details
    Details

← Back to all publications

2026

  1. Napoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
    Abstract
    The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Napoli, F., Campanile, L., De Gregorio, G., & Marrone, S. (2025). Quantum Convolutional Neural Networks for Image Classification: Perspectives and Challenges [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 509–516. https://doi.org/10.5220/0013521500003944
    Abstract
    Quantum Computing is becoming a central point of discussion in both academic and industrial communities. Quantum Machine Learning is one of the most promising subfields of this technology, in particular for image classification. In this paper, the model of Quantum Convolutional Neural Networks and some related implementations are explored in their potential for a non-trivial task of image classification. The paper presents some experimentations and discusses the limitations and the strengths of these approaches when compared with classical Convolutional Neural Networks. Furthermore, an analysis of the impact of the noise level on the quality of the classification task has been performed. This paper reports a substantial equivalence of the perfomance of the model with respect the level of noise. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2024

  1. Verde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
    Abstract
    Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s)
    DOI Publisher Details
    Details

2023

  1. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Marrone, S., Marulli, F., & Verde, L. (2022). Challenges and Trends in Federated Learning for Well-being and Healthcare [Conference paper]. Procedia Computer Science, 207, 1144–1153. https://doi.org/10.1016/j.procs.2022.09.170
    Abstract
    Currently, research in Artificial Intelligence, both in Machine Learning and Deep Learning, paves the way for promising innovations in several areas. In healthcare, especially, where large amounts of quantitative and qualitative data are transferred to support studies and early diagnosis and monitoring of any diseases, potential security and privacy issues cannot be underestimated. Federated learning is an approach where privacy issues related to sensitive data management can be significantly reduced, due to the possibility to train algorithms without exchanging data. The main idea behind this approach is that learning models can be trained in a distributed way, where multiple devices or servers with decentralized data samples can provide their contributions without having to exchange their local data. Recent studies provided evidence that prototypes trained by adopting Federated Learning strategies are able to achieve reliable performance, thus by generating robust models without sharing data and, consequently, limiting the impact on security and privacy. This work propose a literature overview of Federated Learning approaches and systems, focusing on its application for healthcare. The main challenges, implications, issues and potentials of this approach in the healthcare are outlined. © 2022 The Authors. Published by Elsevier B.V.
    DOI Publisher Details
    Details

2021

  1. Marulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
    Abstract
    Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International.
    DOI Publisher Details
    Details
  2. Campanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
    Abstract
    In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  3. Marulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
    Abstract
    Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
    DOI Publisher Details
    Details

← Back to all publications