Topic: Cameras
Published:
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsBobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
Abstract
The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
2022
- DetailsConference Sensitive Information Detection Adopting Named Entity Recognition: A Proposed MethodologyCampanile, L., de Biase, M. S., Marrone, S., Marulli, F., Raimondo, M., & Verde, L. (2022). Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 377–388. https://doi.org/10.1007/978-3-031-10542-5_26
Abstract
Protecting and safeguarding privacy has become increasingly important, especially in recent years. The increasing possibilities of acquiring and sharing personal information and data through digital devices and platforms, such as apps or social networks, have increased the risks of privacy breaches. In order to effectively respect and guarantee the privacy and protection of sensitive information, it is necessary to develop mechanisms capable of providing such guarantees automatically and reliably. In this paper we propose a methodology able to automatically recognize sensitive data. A Named Entity Recognition was used to identify appropriate entities. An improvement in the recognition of these entities is achieved by evaluating the words contained in an appropriate context window by assessing their similarity to words in a domain taxonomy. This, in fact, makes it possible to refine the labels of the recognized categories using a generic Named Entity Recognition. A preliminary evaluation of the reliability of the proposed approach was performed. In detail, texts of juridical documents written in Italian were analyzed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2021
- DetailsCampanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
Abstract
In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
2020
- DetailsCampanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
Abstract
The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
2026
- DetailsNapoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
Abstract
The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2023
- DetailsCampanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
Abstract
Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) - DetailsCampanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - DetailsBobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
Abstract
The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
2022
- DetailsConference Sensitive Information Detection Adopting Named Entity Recognition: A Proposed MethodologyCampanile, L., de Biase, M. S., Marrone, S., Marulli, F., Raimondo, M., & Verde, L. (2022). Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 377–388. https://doi.org/10.1007/978-3-031-10542-5_26
Abstract
Protecting and safeguarding privacy has become increasingly important, especially in recent years. The increasing possibilities of acquiring and sharing personal information and data through digital devices and platforms, such as apps or social networks, have increased the risks of privacy breaches. In order to effectively respect and guarantee the privacy and protection of sensitive information, it is necessary to develop mechanisms capable of providing such guarantees automatically and reliably. In this paper we propose a methodology able to automatically recognize sensitive data. A Named Entity Recognition was used to identify appropriate entities. An improvement in the recognition of these entities is achieved by evaluating the words contained in an appropriate context window by assessing their similarity to words in a domain taxonomy. This, in fact, makes it possible to refine the labels of the recognized categories using a generic Named Entity Recognition. A preliminary evaluation of the reliability of the proposed approach was performed. In detail, texts of juridical documents written in Italian were analyzed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2021
- DetailsCampanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
Abstract
In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
2020
- DetailsCampanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
Abstract
The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. - DetailsConference A flexible simulation-based framework for model-based/data-driven dependability evaluationAbate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
Abstract
Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE. - DetailsCampanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
Abstract
Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
