Topic: Air quality

Published:

# Topic: Air quality

Air pollutants Air pollution Air pollution control Air pollution control technology Air pollution monitoring Air quality Air quality monitoring Industrial emissions Local pollutions Marine pollution Odour emissions Pollution control Pollution detection Pollution dynamics Waste pollution

2026

  1. Campanile, L., Di Bonito, L. P., Marulli, F., Balzanella, A., & Verde, R. (2026). Toward Privacy-Aware Environmental Monitoring of CO2 and Air Pollutants in Southern Italy [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 317–333. https://doi.org/10.1007/978-3-031-97645-2_21
    Abstract
    The increasing levels of CO2 and air pollutants represent a major challenge to environmental sustainability and public health, particularly in regions characterized by complex geographic and socio-economic dynamics. This work proposes a study focused on the Southern Italy regions, where environmental vulnerabilities are displayed, along with a limited availability of high-granularity data. The main aim of this work is to build and provide a comprehensive and detailed dataset tailored to the region’s unique needs, by leveraging datasets from EDGAR for greenhouse gases and air pollutants, integrated with demographic and territorial morphology data from ISTAT. The creation of composite indicators to monitor trends in emissions and pollution on a fine spatial scale is supported by the data set. These indicators enable initial insight into spatial disparities in pollutant concentrations, offering valuable data to inform targeted policy interventions. The work provided a foundation for next analytical studies, integrating different datasets and highlighting the potential for complex spatiotemporal analysis. The study provides a robust dataset and preliminary insights, enhancing the understanding of environmental dynamics in Southern Italy. Subsequent efforts will focus on extending this methodology to more extensive geographic contexts and incorporating real-time data for adaptive monitoring. The proposed framework also lays the groundwork for privacy-aware environmental monitoring solutions, enabling future integration with edge and IoT-based architectures while addressing privacy and data protection concerns. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2024

  1. Campanile, L., Di Bonito, L. P., Natale, F. D., & Iacono, M. (2024). Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 38(1), 558–564. https://doi.org/10.7148/2024-0558
    Abstract
    Monitoring of non-linear phenomena, such as pollution dynamics, which is the result of several combined factors and the evolution of environmental conditions, greatly benefits by AI tools; a larger benefit derives by the application of explainable solutions, which are capable of providing elements to understand those dynamics for better informed decisions. In this paper we discuss a case with real data in which a posteriori explanations have been produced after the application of ensemble models. © ECMS Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev (Editors) 2024.
    DOI Publisher Details
    Details

2023

  1. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details

← Back to all publications

2026

  1. Campanile, L., Di Bonito, L. P., Marulli, F., Balzanella, A., & Verde, R. (2026). Toward Privacy-Aware Environmental Monitoring of CO2 and Air Pollutants in Southern Italy [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 317–333. https://doi.org/10.1007/978-3-031-97645-2_21
    Abstract
    The increasing levels of CO2 and air pollutants represent a major challenge to environmental sustainability and public health, particularly in regions characterized by complex geographic and socio-economic dynamics. This work proposes a study focused on the Southern Italy regions, where environmental vulnerabilities are displayed, along with a limited availability of high-granularity data. The main aim of this work is to build and provide a comprehensive and detailed dataset tailored to the region’s unique needs, by leveraging datasets from EDGAR for greenhouse gases and air pollutants, integrated with demographic and territorial morphology data from ISTAT. The creation of composite indicators to monitor trends in emissions and pollution on a fine spatial scale is supported by the data set. These indicators enable initial insight into spatial disparities in pollutant concentrations, offering valuable data to inform targeted policy interventions. The work provided a foundation for next analytical studies, integrating different datasets and highlighting the potential for complex spatiotemporal analysis. The study provides a robust dataset and preliminary insights, enhancing the understanding of environmental dynamics in Southern Italy. Subsequent efforts will focus on extending this methodology to more extensive geographic contexts and incorporating real-time data for adaptive monitoring. The proposed framework also lays the groundwork for privacy-aware environmental monitoring solutions, enabling future integration with edge and IoT-based architectures while addressing privacy and data protection concerns. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2024

  1. Campanile, L., Di Bonito, L. P., Natale, F. D., & Iacono, M. (2024). Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 38(1), 558–564. https://doi.org/10.7148/2024-0558
    Abstract
    Monitoring of non-linear phenomena, such as pollution dynamics, which is the result of several combined factors and the evolution of environmental conditions, greatly benefits by AI tools; a larger benefit derives by the application of explainable solutions, which are capable of providing elements to understand those dynamics for better informed decisions. In this paper we discuss a case with real data in which a posteriori explanations have been produced after the application of ensemble models. © ECMS Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev (Editors) 2024.
    DOI Publisher Details
    Details

2023

  1. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2021

  1. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details

← Back to all publications