Topic: Accidents

Published:

# Topic: Accidents

Accidents Curricula Disasters Emergency management Emergency management systems Meteorology Poisoning attacks Resilience index Resilient systems

2023

  1. Campanile, L., De Biase, M. S., De Fazio, R., Di Giovanni, M., Marulli, F., & Verde, L. (2023). Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins Design [Conference paper]. Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023, 301–306. https://doi.org/10.1109/CSR57506.2023.10224945
    Abstract
    Nowadays, the problem of system robustness, es-pecially in critical infrastructures, is a challenging open question. Some systems provide crucial services continuously failing, threatening the availability of the provided services. By designing a robust architecture, this criticality could be overcome or limited, ensuring service continuity. The definition of a resilient system involves not only its architecture but also the methodology implemented for the calculation and analysis of some indices, quantifying system performance. This study provides an innovative architecture for Digital Twins implementation based on a hybrid methodology for improving the control system in realtime. The introduced approach brings together different techniques. In particular, the work combines the point of strengths of Model-based methods and Data-driven ones, aiming to improve system performances. © 2023 IEEE.
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
    Abstract
    Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd
    DOI Publisher Details
    Details
  2. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  3. Marulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
    Abstract
    Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications

2023

  1. Campanile, L., De Biase, M. S., De Fazio, R., Di Giovanni, M., Marulli, F., & Verde, L. (2023). Merging Model-Based and Data-Driven Approaches for Resilient Systems Digital Twins Design [Conference paper]. Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023, 301–306. https://doi.org/10.1109/CSR57506.2023.10224945
    Abstract
    Nowadays, the problem of system robustness, es-pecially in critical infrastructures, is a challenging open question. Some systems provide crucial services continuously failing, threatening the availability of the provided services. By designing a robust architecture, this criticality could be overcome or limited, ensuring service continuity. The definition of a resilient system involves not only its architecture but also the methodology implemented for the calculation and analysis of some indices, quantifying system performance. This study provides an innovative architecture for Digital Twins implementation based on a hybrid methodology for improving the control system in realtime. The introduced approach brings together different techniques. In particular, the work combines the point of strengths of Model-based methods and Data-driven ones, aiming to improve system performances. © 2023 IEEE.
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
    Abstract
    Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd
    DOI Publisher Details
    Details
  2. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  3. Marulli, F., Verde, L., & Campanile, L. (2021). Exploring data and model poisoning attacks to deep learning-based NLP systems [Conference paper]. Procedia Computer Science, 192, 3570–3579. https://doi.org/10.1016/j.procs.2021.09.130
    Abstract
    Natural Language Processing (NLP) is being recently explored also to its application in supporting malicious activities and objects detection. Furthermore, NLP and Deep Learning have become targets of malicious attacks too. Very recent researches evidenced that adversarial attacks are able to affect also NLP tasks, in addition to the more popular adversarial attacks on deep learning systems for image processing tasks. More precisely, while small perturbations applied to the data set adopted for training typical NLP tasks (e.g., Part-of-Speech Tagging, Named Entity Recognition, etc..) could be easily recognized, models poisoning, performed by the means of altered data models, typically provided in the transfer learning phase to a deep neural networks (e.g., poisoning attacks by word embeddings), are harder to be detected. In this work, we preliminary explore the effectiveness of a poisoned word embeddings attack aimed at a deep neural network trained to accomplish a Named Entity Recognition (NER) task. By adopting the NER case study, we aimed to analyze the severity of such a kind of attack to accuracy in recognizing the right classes for the given entities. Finally, this study represents a preliminary step to assess the impact and the vulnerabilities of some NLP systems we adopt in our research activities, and further investigating some potential mitigation strategies, in order to make these systems more resilient to data and models poisoning attacks. © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details

← Back to all publications