Publications tagged with Energy

Published:

Publications tagged with "Energy"

  1. Marrone, S., Campanile, L., De Fazio, R., Di Giovanni, M., Gentile, U., Marulli, F., & Verde, L. (2023). A Petri net oriented approach for advanced building energy management systems [Article]. Journal of Ambient Intelligence and Smart Environments, 15(3), 211–233. https://doi.org/10.3233/AIS-230065
    Abstract
    Sustainability is one of the main goals to pursue in several aspects of everyday life; the recent energy shortage and the price raise worsen this problem, especially in the management of energy in buildings. As the Internet of Things (IoT) is an assessed computing paradigm able to capture meaningful data from the field and send them to cloud infrastructures, other approaches are also enabled, namely model-based approaches. These methods can be used to predict functional and non-functional properties of Building Energy Management Systems (BEMS) before setting up them. This paper aims at bridging the gap between model-based approaches and physical realizations of sensing and small computing devices. Through an integrated approach, able to exploit the power of different dialects of Petri Nets, this paper proposes a methodology for the early evaluation of BEMS properties as well as the automatic generation of IoT controllers. © 2023 - IOS Press. All rights reserved.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details
  3. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2021). Hybrid Simulation of Energy Management in IoT Edge Computing Surveillance Systems [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13104 LNCS, 345–359. https://doi.org/10.1007/978-3-030-91825-5_21
    Abstract
    Internet of Things (IoT) is a well established approach used for the implementation of surveillance systems that are suitable for monitoring large portions of territory. Current developments allow the design of battery powered IoT nodes that can communicate over the network with low energy requirements and locally perform some computing and coordination task, besides running sensing and related processing: it is thus possible to implement edge computing oriented solutions on IoT, if the design encompasses both hardware and software elements in terms of sensing, processing, computing, communications and routing energy costs as one of the quality indices of the system. In this paper we propose a modeling approach for edge computing IoT-based monitoring systems energy related characteristics, suitable for the analysis of energy levels of large battery powered monitoring systems with dynamic and reactive computing workloads. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  4. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details

← Back to all publications