Publications tagged with Cloud
Published:
Publications tagged with "Cloud"
- Campanile, L., de Biase, M. S., & Marulli, F. (2025). Edge-Cloud Distributed Approaches to Text Authorship Analysis: A Feasibility Study [Book chapter]. Lecture Notes on Data Engineering and Communications Technologies, 250, 284–293. https://doi.org/10.1007/978-3-031-87778-0_28
Abstract
Automatic authorship analysis, often referred to as stylometry, is a captivating yet contentious field that employs computational techniques to determine the authorship of textual artefacts. In recent years, the importance of author profiling has grown significantly due to the proliferation of automatic text generation systems. These include both early-generation bots and the latest generative AI-based models, which have heightened concerns about misinformation and content authenticity. This study proposes a novel approach to evaluate the feasibility and effectiveness of contemporary distributed learning methods. The approach leverages the computational advantages of distributed systems while preserving the privacy of human contributors, enabling the collection and analysis of extensive datasets of “human-written” texts in contrast to those generated by bots. More specifically, the proposed method adopts a Federated Learning (FL) framework, integrating readability and stylometric metrics to deliver a privacy-preserving solution for Authorship Attribution (AA). The primary objective is to enhance the accuracy of AA processes, thus achieving a more robust “authorial fingerprint”. Experimental results reveal that while FL effectively protects privacy and mitigates data exposure risks, the combined use of readability and stylometric features significantly increases the accuracy of AA. This approach demonstrates promise for secure and scalable AA applications, particularly in privacy-sensitive contexts and real-time edge computing scenarios. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. - Marulli, F., Campanile, L., Marrone, S., & Verde, L. (2024). Combining Federated and Ensemble Learning in Distributed and Cloud Environments: An Exploratory Study [Book chapter]. Lecture Notes on Data Engineering and Communications Technologies, 203, 297–306. https://doi.org/10.1007/978-3-031-57931-8_29
Abstract
Conventional modern Machine Learning (ML) applications involve training models in the cloud and then transferring them back to the edge, especially in an Internet of Things (IoT) enabled environment. However, privacy-related limitations on data transfer from the edge to the cloud raise challenges: among various solutions, Federated Learning (FL) could satisfy privacy related concerns and accommodate power and energy issues of edge devices. This paper proposes a novel approach that combines FL and Ensemble Learning (EL) to improve both security and privacy challenges. The presented methodology introduces an extra layer, the Federation Layer, to enhance security. It uses Bayesian Networks (BNs) to dynamically filter untrusted/unsecure federation clients. This approach presents a solution for increasing the security and robustness of FL systems, considering also privacy and performance aspects. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. - Campanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
Abstract
Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. - Campanile, L., Iacono, M., Marrone, S., & Mastroianni, M. (2020). On Performance Evaluation of Security Monitoring in Multitenant Cloud Applications [Article]. Electronic Notes in Theoretical Computer Science, 353, 107–127. https://doi.org/10.1016/j.entcs.2020.09.020
Abstract
In this paper we present a modeling approach suitable for practical evaluation of the delays that may affect security monitoring systems in (multitenant) cloud based architecture, and in general to support professionals in planning and evaluating relevant parameters in dealing with new designs or migration projects. The approach is based on modularity and multiformalism techniques to manage complexity and guide designers in an incremental process, to help transferring technical knowledge into modeling practice and to help easing the use of simulation. We present a case study based on a real experience, triggered by a new legal requirement that Italian Public Administration should comply about their datacenters. © 2020 The Author(s) - Campanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
Abstract
The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.