Publications by Stefano Marrone

Published:

2026

  1. Napoli, F., Castaldo, M., Marrone, S., & Campanile, L. (2026). Comparing Emerging Technologies in Image Classification: From Quantum to Kolmogorov [Conference paper]. Lecture Notes in Computer Science, 15886 LNCS, 260–273. https://doi.org/10.1007/978-3-031-97576-9_17
    Abstract
    The rapid evolution of Artificial Intelligence has led to significant advancements in image classification, with novel approaches emerging beyond traditional deep learning paradigms. This paper presents a comparative analysis of three distinct methodologies for image classification: classical Convolutional Neural Networks (CNNs), Kolmogorov-Arnold Networks (KANs) and KAN-based CNNs and Quantum Machine Learning using Quantum Convolutional Neural Networks. The study evaluates these models on the Labeled Faces in the Wild dataset, implementing the different classifiers with existing, well-assessed technologies. Given the fundamental differences in computational paradigms, performance assessment extends beyond traditional accuracy metrics to include computational efficiency, interpretability, and, for quantum models, gate depth and noise. As a summary of the results, the proposed Quantum Convolutional Neural Network (QCNN) model achieves an accuracy of 75% on the target images classification task, indicating promising performance within current quantum computational limits. All the experiments strongly suggest that Convolutional Kolmogorov-Arnold Networks (CKANs) exhibit increased accuracy as image resolution decreases, QCNN performance meaningfully changes in relation to noise level, while CNNs still keeping strong discriminative capabilities. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Di Giovanni, M., Verde, L., Campanile, L., Romoli, M., Sabbarese, C., & Marrone, S. (2025). Assessing Safety and Sustainability of a Monitoring System for Nuclear Waste Management [Article]. IEEE Access, 13, 120486–120505. https://doi.org/10.1109/ACCESS.2025.3586735
    Abstract
    Nowadays, nuclear technologies are increasingly being integrated into industry, healthcare and manufacturing. As a side effect, waste materials are produced according to standard processes which are subject to international regulations. One of the most critical phases is the pre-disposal, due to the uncertainty related to the evolution of the materials and their potential impact on environmental protection. This paper introduces the architecture of a monitoring system able to accomplish safety goals and to guarantee energetic sustainability. The possibility of defining different system configurations (e. g., sensor scheduling policies, geometry of the sites, trustworthiness of the sensors) fosters a high adaptability to several monitoring scenarios, being characterised by different safety and sustainability levels. A methodology, integrating a model-based approach with data collection and processing, is proposed to quantitatively evaluate system configurations. This methodology is based on the definition of two metrics — one for safety and one for sustainability — and an assessment model. The model computes the metrics considering geometry of the place, scheduling and trustworthiness of monitoring sensors. This is a first step in the construction of a Decision Support System able to aid human operators in assessing system configurations and finding possible safety/sustainability trade-offs. A case study is used to show the feasibility of the approach: some configurations are evaluated on the real plant, placed at Řež in the Czech Republic, assessing them on the base of the defined metrics. © 2025 The Authors.
    DOI Publisher Details
    Details
  2. Napoli, F., Campanile, L., De Gregorio, G., & Marrone, S. (2025). Quantum Convolutional Neural Networks for Image Classification: Perspectives and Challenges [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 509–516. https://doi.org/10.5220/0013521500003944
    Abstract
    Quantum Computing is becoming a central point of discussion in both academic and industrial communities. Quantum Machine Learning is one of the most promising subfields of this technology, in particular for image classification. In this paper, the model of Quantum Convolutional Neural Networks and some related implementations are explored in their potential for a non-trivial task of image classification. The paper presents some experimentations and discusses the limitations and the strengths of these approaches when compared with classical Convolutional Neural Networks. Furthermore, an analysis of the impact of the noise level on the quality of the classification task has been performed. This paper reports a substantial equivalence of the perfomance of the model with respect the level of noise. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
    DOI Publisher Details
    Details

2024

  1. Barzegar, A., Campanile, L., Marrone, S., Marulli, F., Verde, L., & Mastroianni, M. (2024). Fuzzy-based Severity Evaluation in Privacy Problems: An Application to Healthcare [Conference paper]. Proceedings - 2024 19th European Dependable Computing Conference, EDCC 2024, 147–154. https://doi.org/10.1109/EDCC61798.2024.00037
    Abstract
    The growing diffusion of smart pervasive applications is starting to mine personal privacy: from Internet of Things to Machine Learning, the opportunities for privacy loss are many. As for other concerns involving people and goods as financial, safety and security, researchers and practitioners have defined in time different risk assessment procedures to have repeatable and accurate ways of detecting, quantifying and managing the (possible) source of privacy loss. This paper defines a methodology to deal with privacy risk assessment, overcoming the traditional dichotomy between qualitative (easy to apply) and quantitative (accurate) approaches. The present paper introduces an approach based on fuzzy logic, able to conjugate the benefits of both techniques. The feasibility of the proposed methodology is demonstrated using a healthcare case study. © 2024 IEEE.
    DOI Publisher Details
    Details
  2. Marulli, F., Campanile, L., Marrone, S., & Verde, L. (2024). Combining Federated and Ensemble Learning in Distributed and Cloud Environments: An Exploratory Study [Book chapter]. Lecture Notes on Data Engineering and Communications Technologies, 203, 297–306. https://doi.org/10.1007/978-3-031-57931-8_29
    Abstract
    Conventional modern Machine Learning (ML) applications involve training models in the cloud and then transferring them back to the edge, especially in an Internet of Things (IoT) enabled environment. However, privacy-related limitations on data transfer from the edge to the cloud raise challenges: among various solutions, Federated Learning (FL) could satisfy privacy related concerns and accommodate power and energy issues of edge devices. This paper proposes a novel approach that combines FL and Ensemble Learning (EL) to improve both security and privacy challenges. The presented methodology introduces an extra layer, the Federation Layer, to enhance security. It uses Bayesian Networks (BNs) to dynamically filter untrusted/unsecure federation clients. This approach presents a solution for increasing the security and robustness of FL systems, considering also privacy and performance aspects. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
    DOI Publisher Details
    Details
  3. Marulli, F., Campanile, L., de Biase, M. S., Marrone, S., Verde, L., & Bifulco, M. (2024). Understanding Readability of Large Language Models Output: An Empirical Analysis [Conference paper]. Procedia Computer Science, 246(C), 5273–5282. https://doi.org/10.1016/j.procs.2024.09.636
    Abstract
    Recently, Large Language Models (LLMs) have seen some impressive leaps, achieving the ability to accomplish several tasks, from text completion to powerful chatbots. The great variety of available LLMs and the fast pace of technological innovations in this field, is making LLM assessment a hard task to accomplish: understanding not only what such a kind of systems generate but also which is the quality of their results is of a paramount importance. Generally, the quality of a synthetically generated object could refer to the reliability of the content, to the lexical variety or coherence of the text. Regarding the quality of text generation, an aspect that up to now has not been adequately discussed is concerning the readability of textual artefacts. This work focuses on the latter aspect, proposing a set of experiments aiming to better understanding and evaluating the degree of readability of texts automatically generated by an LLM. The analysis is performed through an empirical study based on: considering a subset of five pre-trained LLMs; considering a pool of English text generation tasks, with increasing difficulty, assigned to each of the models; and, computing a set of the most popular readability indexes available from the computational linguistics literature. Readability indexes will be computed for each model to provide a first perspective of the readability of textual contents artificially generated can vary among different models and under different requirements of the users. The results obtained by evaluating and comparing different models provide interesting insights, especially into the responsible use of these tools by both beginners and not overly experienced practitioners. © 2024 The Authors.
    DOI Publisher Details
    Details
  4. Verde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
    Abstract
    Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s)
    DOI Publisher Details
    Details

2023

  1. Campanile, L., de Fazio, R., Di Giovanni, M., Marrone, S., Marulli, F., & Verde, L. (2023). Inferring Emotional Models from Human-Machine Speech Interactions [Conference paper]. Procedia Computer Science, 225, 1241–1250. https://doi.org/10.1016/j.procs.2023.10.112
    Abstract
    Human-Machine Interfaces (HMIs) are getting more and more important in a hyper-connected society. Traditional HMIs are built considering cognitive features while emotional ones are often neglected, bringing sometimes such interfaces to misuse. As a part of a long run research, oriented to the definition of an HMI engineering approach, this paper concretely proposes a method to build an emotional-aware explicit model of the user starting from the behaviour of the human with a virtual agent. The paper also proposes an instance of this model inference process in voice assistants in an automatic depression context, which can constitute the core phase to realize a Human Digital Twin of a patient. The case study generated a model composed of Fluid Stochastic Petri Net sub-models, achieved after the data analysis by a Support Vector Machine. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
    DOI Publisher Details
    Details
  2. Marrone, S., Campanile, L., De Fazio, R., Di Giovanni, M., Gentile, U., Marulli, F., & Verde, L. (2023). A Petri net oriented approach for advanced building energy management systems [Article]. Journal of Ambient Intelligence and Smart Environments, 15(3), 211–233. https://doi.org/10.3233/AIS-230065
    Abstract
    Sustainability is one of the main goals to pursue in several aspects of everyday life; the recent energy shortage and the price raise worsen this problem, especially in the management of energy in buildings. As the Internet of Things (IoT) is an assessed computing paradigm able to capture meaningful data from the field and send them to cloud infrastructures, other approaches are also enabled, namely model-based approaches. These methods can be used to predict functional and non-functional properties of Building Energy Management Systems (BEMS) before setting up them. This paper aims at bridging the gap between model-based approaches and physical realizations of sensing and small computing devices. Through an integrated approach, able to exploit the power of different dialects of Petri Nets, this paper proposes a methodology for the early evaluation of BEMS properties as well as the automatic generation of IoT controllers. © 2023 - IOS Press. All rights reserved.
    DOI Publisher Details
    Details
  3. Di Giovanni, M., Campanile, L., D’Onofrio, A., Marrone, S., Marulli, F., Romoli, M., Sabbarese, C., & Verde, L. (2023). Supporting the Development of Digital Twins in Nuclear Waste Monitoring Systems [Conference paper]. Procedia Computer Science, 225, 3133–3142. https://doi.org/10.1016/j.procs.2023.10.307
    Abstract
    In a world whose attention to environmental and health problems is very high, the issue of properly managing nuclear waste is of a primary importance. Information and Communication Technologies have the due to support the definition of the next-generation plants for temporary storage of such wasting materials. This paper investigates on the adoption of one of the most cutting-edge techniques in computer science and engineering, i.e. Digital Twins, with the combination of other modern methods and technologies as Internet of Things, model-based and data-driven approaches. The result is the definition of a methodology able to support the construction of risk-aware facilities for storing nuclear waste. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
    DOI Publisher Details
    Details

2022

  1. Verde, L., Campanile, L., Marulli, F., & Marrone, S. (2022). Speech-based Evaluation of Emotions-Depression Correlation. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927758
    Abstract
    Early detection of depression symptoms is fundamental to limit the onset of further associated behavioural disorders, such as psychomotor or social withdrawal. The combination of Artificial Intelligence and speech analysis revealed the existence of objectively measurable physical manifestations for early detection of depressive symptoms, constituting a valid support to evaluate these signals. To push forward the research state-of-art, this aim of this paper is to understand quantitative correlations between emotional states and depression by proposing a study across different datasets containing speech of both depressed/non-depressed people and emotional-related samples. The relationship between affective measures and depression can, in fact, a support to evaluate the presence of depression state. This work constitutes a preliminary step of a study whose final aim is to pursue AI-powered personalized medicine by building sophisticated Clinical Decision Support Systems for depression, as well as other psychological disorders. © 2022 IEEE.
    DOI Publisher Details
    Details
  2. Campanile, L., Marrone, S., Marulli, F., & Verde, L. (2022). Challenges and Trends in Federated Learning for Well-being and Healthcare [Conference paper]. Procedia Computer Science, 207, 1144–1153. https://doi.org/10.1016/j.procs.2022.09.170
    Abstract
    Currently, research in Artificial Intelligence, both in Machine Learning and Deep Learning, paves the way for promising innovations in several areas. In healthcare, especially, where large amounts of quantitative and qualitative data are transferred to support studies and early diagnosis and monitoring of any diseases, potential security and privacy issues cannot be underestimated. Federated learning is an approach where privacy issues related to sensitive data management can be significantly reduced, due to the possibility to train algorithms without exchanging data. The main idea behind this approach is that learning models can be trained in a distributed way, where multiple devices or servers with decentralized data samples can provide their contributions without having to exchange their local data. Recent studies provided evidence that prototypes trained by adopting Federated Learning strategies are able to achieve reliable performance, thus by generating robust models without sharing data and, consequently, limiting the impact on security and privacy. This work propose a literature overview of Federated Learning approaches and systems, focusing on its application for healthcare. The main challenges, implications, issues and potentials of this approach in the healthcare are outlined. © 2022 The Authors. Published by Elsevier B.V.
    DOI Publisher Details
    Details
  3. Campanile, L., de Biase, M. S., Marrone, S., Marulli, F., Raimondo, M., & Verde, L. (2022). Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 377–388. https://doi.org/10.1007/978-3-031-10542-5_26
    Abstract
    Protecting and safeguarding privacy has become increasingly important, especially in recent years. The increasing possibilities of acquiring and sharing personal information and data through digital devices and platforms, such as apps or social networks, have increased the risks of privacy breaches. In order to effectively respect and guarantee the privacy and protection of sensitive information, it is necessary to develop mechanisms capable of providing such guarantees automatically and reliably. In this paper we propose a methodology able to automatically recognize sensitive data. A Named Entity Recognition was used to identify appropriate entities. An improvement in the recognition of these entities is achieved by evaluating the words contained in an appropriate context window by assessing their similarity to words in a domain taxonomy. This, in fact, makes it possible to refine the labels of the recognized categories using a generic Named Entity Recognition. A preliminary evaluation of the reliability of the proposed approach was performed. In detail, texts of juridical documents written in Italian were analyzed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  4. Campanile, L., Biase, M. S. de, Marrone, S., Raimondo, M., & Verde, L. (2022). On the Evaluation of BDD Requirements with Text-based Metrics: The ETCS-L3 Case Study [Conference paper]. Smart Innovation, Systems and Technologies, 309, 561–571. https://doi.org/10.1007/978-981-19-3444-5_48
    Abstract
    A proper requirement definition phase is of a paramount importance in software engineering. It is the first and prime mean to realize efficient and reliable systems. System requirements are usually formulated and expressed in natural language, given its universality and ease of communication and writing. Unfortunately, natural language can be a source of ambiguity, complexity and omissions, which may cause system failures. Among the different approaches proposed by the software engineering community, Behavioural-Driven Development (BDD) is affirming as a valid, practical method to structure effective and non-ambiguous requirement specifications. The paper tackles with the problem of measuring requirements in BDD by assessing some traditional Natural Language Processing-related metrics with respect to a sample excerpt of requirement specification rewritten according to the BDD criteria. This preliminary assessment is made on the ERTMS-ETCS Level 3 case study whose specification, up to this date, is not managed by a standardisation body. The paper demonstrates the necessity of novel metrics able to cope with the BDD specification paradigms. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marrone, S., & Mastroianni, M. (2020). On Performance Evaluation of Security Monitoring in Multitenant Cloud Applications [Article]. Electronic Notes in Theoretical Computer Science, 353, 107–127. https://doi.org/10.1016/j.entcs.2020.09.020
    Abstract
    In this paper we present a modeling approach suitable for practical evaluation of the delays that may affect security monitoring systems in (multitenant) cloud based architecture, and in general to support professionals in planning and evaluating relevant parameters in dealing with new designs or migration projects. The approach is based on modularity and multiformalism techniques to manage complexity and guide designers in an incremental process, to help transferring technical knowledge into modeling practice and to help easing the use of simulation. We present a case study based on a real experience, triggered by a new legal requirement that Italian Public Administration should comply about their datacenters. © 2020 The Author(s)
    DOI Publisher Details
    Details
  2. Abate, C., Campanile, L., & Marrone, S. (2020). A flexible simulation-based framework for model-based/data-driven dependability evaluation [Conference paper]. Proceedings - 2020 IEEE 31st International Symposium on Software Reliability Engineering Workshops, ISSREW 2020, 261–266. https://doi.org/10.1109/ISSREW51248.2020.00083
    Abstract
    Modern predictive maintenance is the convergence of several technological trends: developing new techniques and algorithms can be very costly due to the need for a physical prototype. This research has the final aim to build a simulation-based software framework for modeling and analysing complex systems and for defining predictive maintenance algorithms. By the usage of simulation, quantitative evaluation of the dependability of such systems will be possible. The ERTMS/ETCS dependability case study is presented to prove the applicability of the software. © 2020 IEEE.
    DOI Publisher Details
    Details

← Back to all publications