Publications by Mauro Iacono

Published:

2026

  1. Campanile, L., Iacono, M., Mastroianni, M., Riccio, C., & Viscardi, B. (2026). A TOPSIS-Based Approach to Evaluate Alternative Solutions for GDPR-Compliant Smart-City Services Implementation [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 303–316. https://doi.org/10.1007/978-3-031-97645-2_20
    Abstract
    Adapting or designing a system which operates on personal data in EU is impacted by the privacy-by-design and privacy-by-default principles because of the prescriptions of the GDPR. In this paper we propose an approach to decision making which is based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The approach is applied to a GDPR system compliance design process, based on a case study about system performance evaluation by means of queuing networks, but is absolutely general with respect to analogous problems, in which cost issues should be balanced with technical performances and risk exposure. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
    DOI Publisher Details
    Details

2025

  1. Campanile, L., Iacono, M., Mastroianni, M., & Riccio, C. (2025). Performance Evaluation of an Edge-Blockchain Architecture for Smart City [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2025-June, 620–627. https://doi.org/10.7148/2025-0620
    Abstract
    This paper presents a simulation-based methodology to evaluate the performance of a privacy-compliant edge-blockchain architecture for smart city environments. The proposed model combines edge computing with a private, permissioned blockchain to ensure low-latency processing, secure data management, and verifiable transactions. Using a discrete-event simulation framework, we analyze the behavior of the system under realistic workloads and time-varying traffic conditions. The model captures edge operations, including preprocessing and cryptographic tasks, as well as blockchain validation using Proof of Stake consensus. Several experiments explore saturation thresholds, resource utilization, and latency dynamics, under both synthetic and realistic traffic profiles. Results reveal how architectural bottlenecks shift depending on resource allocation and input rate, and demonstrate the importance of balanced dimensioning between edge and blockchain layers. © ECMS Marco Scarpa, Salvatore Cavalieri, Salvatore Serrano, Fabrizio De Vita (Editors) 2025.
    DOI Publisher Details
    Details
  2. Di Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
    Abstract
    This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
    DOI Publisher Details
    Details

2024

  1. Campanile, L., Di Bonito, L. P., Natale, F. D., & Iacono, M. (2024). Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 38(1), 558–564. https://doi.org/10.7148/2024-0558
    Abstract
    Monitoring of non-linear phenomena, such as pollution dynamics, which is the result of several combined factors and the evolution of environmental conditions, greatly benefits by AI tools; a larger benefit derives by the application of explainable solutions, which are capable of providing elements to understand those dynamics for better informed decisions. In this paper we discuss a case with real data in which a posteriori explanations have been produced after the application of ensemble models. © ECMS Daniel Grzonka, Natalia Rylko, Grazyna Suchacka, Vladimir Mityushev (Editors) 2024.
    DOI Publisher Details
    Details
  2. Di Bonito, L. P., Campanile, L., Di Natale, F., Mastroianni, M., & Iacono, M. (2024). eXplainable Artificial Intelligence in Process Engineering: Promises, Facts, and Current Limitations [Review]. Applied System Innovation, 7(6). https://doi.org/10.3390/asi7060121
    Abstract
    Artificial Intelligence (AI) has been swiftly incorporated into the industry to become a part of both customer services and manufacturing operations. To effectively address the ethical issues now being examined by the government, AI models must be explainable in order to be used in both scientific and societal contexts. The current state of eXplainable artificial intelligence (XAI) in process engineering is examined in this study through a systematic literature review (SLR), with particular attention paid to the technology’s effect, degree of adoption, and potential to improve process and product quality. Due to restricted access to sizable, reliable datasets, XAI research in process engineering is still primarily exploratory or propositional, despite noteworthy applicability in well-known case studies. According to our research, XAI is becoming more and more positioned as a tool for decision support, with a focus on robustness and dependability in process optimization, maintenance, and quality assurance. This study, however, emphasizes that the use of XAI in process engineering is still in its early stages, and there is significant potential for methodological development and wider use across technical domains. © 2024 by the authors.
    DOI Publisher Details
    Details

2023

  1. Campanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
    Abstract
    Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
    DOI Publisher Details
    Details
  2. Bobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
    Abstract
    The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI Publisher Details
    Details
  3. Di Bonito, L. P., Campanile, L., Napolitano, E., Iacono, M., Portolano, A., & Di Natale, F. (2023). Analysis of a marine scrubber operation with a combined analytical/AI-based method [Article]. Chemical Engineering Research and Design, 195, 613–623. https://doi.org/10.1016/j.cherd.2023.06.006
    Abstract
    This paper describes the performances of a marine SO2 absorption scrubber installed onboard a large Ro-Ro cargo ship. The study is based on the reconstruction of an extensive dataset from one-year continuous monitoring of the scrubber’s performances and operating conditions. The dataset has been interpreted with a conventional analytical, physical-mathematical, model for absorbers’ rating and its combination with an Artificial Intelligence (AI) one. First, the analytical model has been used to provide a deterministic mathematical framework for the interpretation and the prediction of the scrubber’s performances in terms of absorbed SO2 molar flow and SO2 concentration at the scrubber exit. Then, data mining and AI techniques have been applied to develop an Artificial Neural Network able to predict the error between the actual SO2 concentration at the scrubber exit and the corresponding analytical model predictions. The final result is a combined model providing superior robustness and accuracy in the prediction of the scrubber performance while preserving a rationale for process design and operation. This interesting outcome suggests that the development of combined, or hybrid, Analytical/AI models can be a reliable and cost-effective way to improve chemical engineers’ ability to design and control marine scrubbers, as well as other chemical equipment. © 2023 Institution of Chemical Engineers
    DOI Publisher Details
    Details
  4. Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
    Abstract
    Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.
    Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., & Mastroianni, M. (2022). Towards privacy-aware software design in small and medium enterprises. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927958
    Abstract
    The legal definition of privacy regulations, like GDPR in the European Union, significantly impacted on the way in which software, systems and organizations should be designed or maintained to be compliant to rules. While the privacy community stated proper risk assessment and mitigation approaches to be applied, literature seems to suggest that the software engineering community, with special reference to companies, did actually concentrate on the specification phase, with less attention for the test phase of products. In coherence with the privacy-by-design approach, we believe that a bigger methodological effort must be put in the systematic adaptation of software development cycles to privacy regulations, and that this effort might be promoted in the industrial community by focusing on the relation between organizational costs vs technical features, also leveraging the benefits of targeted testing as a mean to lower operational privacy enforcement costs. © 2022 IEEE.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Barbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
    Abstract
    The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
    DOI Publisher Details
    Details
  2. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Designing a GDPR compliant blockchain-based IoV distributed information tracking system [Article]. Information Processing and Management, 58(3). https://doi.org/10.1016/j.ipm.2021.102511
    Abstract
    Blockchain technologies and distributed ledgers enable the design and implementation of trustable data logging systems that can be used by multiple parties to produce a non-repudiable database. The case of Internet of Vehicles may greatly benefit of such a possibility to track the chain of responsibility in case of accidents or damages due to bad or omitted maintenance, improving the safety of circulation and helping granting a correct handling of related legal issues. However, there are privacy issues that have to be considered, as tracked information potentially include data about private persons (position, personal habits), commercially relevant information (state of the fleet of a company, freight movement and related planning, logistic strategies), or even more critical knowledge (e.g., considering vehicles belonging to police, public authorities, governments or officers in sensible positions). In the European Union, all this information is covered by the General Data Protection Regulation (GDPR). In this paper we propose a reference model for a system that manages relevant information to show how blockchain can support GDPR compliant solutions for Internet of Vehicles, taking as a reference an integrated scenario based on Italy, and analyze a subset of its use cases to show its viability with reference to privacy issues. © 2021 Elsevier Ltd
    DOI Publisher Details
    Details
  3. Campanile, L., Cantiello, P., Iacono, M., Marulli, F., & Mastroianni, M. (2021). Risk Analysis of a GDPR-Compliant Deletion Technique for Consortium Blockchains Based on Pseudonymization [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12956 LNCS, 3–14. https://doi.org/10.1007/978-3-030-87010-2_1
    Abstract
    Blockchains provide a valid and profitable support for the implementation of trustable and secure distributed ledgers, in support to groups of subjects that are potentially competitors in conflict of interest but need to share progressive information recording processes. Blockchains prevent data stored in blocks from being altered or deleted, but there are situations in which stored information must be deleted or made inaccessible on request or periodically, such as the ones in which GDPR is applicable. In this paper we present literature solutions and design an implementation in the context of a traffic management system for the Internet of Vehicles based on the Pseudonymization/Cryptography solution, evaluating its viability, its GDPR compliance and its level of risk. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  4. Campanile, L., Iacono, M., Levis, A. H., Marulli, F., & Mastroianni, M. (2021). Privacy regulations, smart roads, blockchain, and liability insurance: Putting technologies to work [Article]. IEEE Security and Privacy, 19(1), 34–43. https://doi.org/10.1109/MSEC.2020.3012059
    Abstract
    Smart streets promise widely available traffic information to help improve people’s safety. Unfortunately, gathering that data may threaten privacy. We describe an architecture that exploits a blockchain and the Internet of Vehicles and show its compliance with the General Data Protection Regulation. © 2003-2012 IEEE.
    DOI Publisher Details
    Details
  5. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2021). Hybrid Simulation of Energy Management in IoT Edge Computing Surveillance Systems [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13104 LNCS, 345–359. https://doi.org/10.1007/978-3-030-91825-5_21
    Abstract
    Internet of Things (IoT) is a well established approach used for the implementation of surveillance systems that are suitable for monitoring large portions of territory. Current developments allow the design of battery powered IoT nodes that can communicate over the network with low energy requirements and locally perform some computing and coordination task, besides running sensing and related processing: it is thus possible to implement edge computing oriented solutions on IoT, if the design encompasses both hardware and software elements in terms of sensing, processing, computing, communications and routing energy costs as one of the quality indices of the system. In this paper we propose a modeling approach for edge computing IoT-based monitoring systems energy related characteristics, suitable for the analysis of energy levels of large battery powered monitoring systems with dynamic and reactive computing workloads. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  6. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details
  7. Marulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
    Abstract
    Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Iacono, M., Marrone, S., & Mastroianni, M. (2020). On Performance Evaluation of Security Monitoring in Multitenant Cloud Applications [Article]. Electronic Notes in Theoretical Computer Science, 353, 107–127. https://doi.org/10.1016/j.entcs.2020.09.020
    Abstract
    In this paper we present a modeling approach suitable for practical evaluation of the delays that may affect security monitoring systems in (multitenant) cloud based architecture, and in general to support professionals in planning and evaluating relevant parameters in dealing with new designs or migration projects. The approach is based on modularity and multiformalism techniques to manage complexity and guide designers in an incremental process, to help transferring technical knowledge into modeling practice and to help easing the use of simulation. We present a case study based on a real experience, triggered by a new legal requirement that Italian Public Administration should comply about their datacenters. © 2020 The Author(s)
    DOI Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
    Abstract
    Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd.
    DOI Publisher Details
    Details
  3. Campanile, L., Iacono, M., Lotito, R., & Mastroianni, M. (2020). A WSN Energy-Aware approach for air pollution monitoring in waste treatment facility site: A case study for landfill monitoring odour [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 526–532. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089477488&partnerID=40&md5=13ea9ca38f15c5b885ef7e501067010c
    Abstract
    The gaseous emissions derived from industrial plants are generally subject to a strictly program of monitoring, both continuous or one-spot, in order to comply with the limits imposed by the permitting license. Nowadays the problem of odour emission, and the consequently nuisance generated to the nearest receptors, has acquired importance so that is frequently asked a specific implementation of the air pollution monitoring program. In this paper we studied the case study of a generic landfill for the implementation of the odour monitoring system and time-specific use of air pollution control technology. The off-site monitoring is based on the deployment of electronic nose as part of a specifically built WSN system. The nodes outside the landfill boundary do not act as a continuously monitoring stations but as sensors activated when specific conditions, inside and outside the landfill, are achieved. The WSN is then organized on an energy-aware approach so to prolong the lifetime of the entire system, with significant cost-benefit advancement, and produce a monitoring-structure that can answer to specific input like threshold overshooting. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details
  4. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Privacy regulations challenges on data-centric and iot systems: A case study for smart vehicles [Conference paper]. IoTBDS 2020 - Proceedings of the 5th International Conference on Internet of Things, Big Data and Security, 507–520. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089476036&partnerID=40&md5=c18dd73c221ec312a330521bf03d332e
    Abstract
    Internet of Things (IoTs) services and data-centric systems allow smart and efficient information exchanging. Anyway, even if existing IoTs and cyber security architectures are enforcing, they are still vulnerable to security issues, as unauthorized access, data breaches, intrusions. They can’t provide yet sufficiently robust and secure solutions to be applied in a straightforward way, both for ensuring privacy preservation and trustworthiness of transmitted data, evenly preventing from its fraudulent and unauthorized usage. Such data potentially include critical information about persons’ privacy (locations, visited places, behaviors, goods, anagraphic data and health conditions). So, novel approaches for IoTs and data-centric security are needed. In this work, we address IoTs systems security problem focusing on the privacy preserving issue. Indeed, after the European Union introduced the General Data Protection Regulation (GDPR), privacy data protection is a mandatory requirement for systems producing and managing sensible users’ data. Starting from a case study for the Internet of Vehicles (IoVs), we performed a pilot study and DPIA assessment to analyze possible mitigation strategies for improving the compliance of IoTs based systems to GDPR requirements. Our preliminary results evidenced that the introduction of blockchains in IoTs systems architectures can improve significantly the compliance to privacy regulations. Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
    Publisher Details
    Details
  5. Campanile, L., Iacono, M., Marulli, F., Mastroianni, M., & Mazzocca, N. (2020). Toward a fuzzy-based approach for computational load offloading of IoT devices [Article]. Journal of Universal Computer Science, 26(11), 1455–1474. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100774625&partnerID=40&md5=1d88148124172a6b7ac374387f21199a
    Abstract
    Technological development and market expansion offer an increased availability of resources and computing power on IoT nodes at affordable cost. The edge computing paradigm allows keeping locally on the edge of the network a part of computing, while keeping all advantages of the cloud and adding support for privacy, real-time and network resilience. This can be further improved in IoT applications by flexibly harvesting resources on IoT nodes, by moving part of the computing tasks related to data from the edge server to the nodes, raising the abstraction level of the data aspects of the architecture and potentially enabling larger IoT networks to be efficiently deployed and managed, in a stand-alone logic or as a component of edge architecture. Anyway, an efficient energy management mechanism is needed for battery powered IoT networks, the most flexible implementations, that dynamically balances task allocation and execution in order to In this paper we present a fuzzy logic based power management strategy for IoT subsystem that aims at maximizing the duration of the network by locally migrating part of the computing tasks between nodes. As our goal is to enable the deployment of semi-autonomic large IoT networks, our proposal does not rely on external resources for migration control and operates on a local basis to ensure scalability: at the best of our knowledge, this diferentiates our proposal with respect to similar solutions available in literature. © 2020, IICM. All rights reserved.
    Publisher Details
    Details
  6. Campanile, L., Iacono, M., Marulli, F., & Mastroianni, M. (2020). A simulation study on a WSN for emergency management [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 34(1), 384–392. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094937629&partnerID=40&md5=69ee7b771d76c72bd5012883b86e67ca
    Abstract
    Wireless Sensors Networks (WSN) are one of the ways to provide the communication infrastructure for advanced applications based on the Internet of Things (IoT) paradigm. IoT supports high level applications over WSN to provide services in a number of fields. WSN are also suitable to support critical applications, as the supporting technologies are consolidated and standard network services can be used on top of the specific layers. Furthermore, generic distributed or network-enabled software can be run over the nodes of a WSN. In this paper we evaluate and compare performances of IEEE 802.llg and 802.1 In, two implementations of the popular Wi-Fi technology, to support the deployment and utilization of an energy management support system, used to monitor the field by a team of firefighters during a mission. Evaluation on an example scenario is done by using ns-3, an open network simulator characterized by its realistic details, to understand the actual limitations of the two standards besides theoretical limits. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther.
    Publisher Details
    Details
  7. Campanile, L., Iacono, M., Martinelli, F., Marulli, F., Mastroianni, M., Mercaldo, F., & Santone, A. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources [Conference paper]. Advances in Intelligent Systems and Computing, 1150 AISC, 890–901. https://doi.org/10.1007/978-3-030-44038-1_81
    Abstract
    The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications. © 2020, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  8. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details
  9. Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Computer network simulation with ns-3: A systematic literature review [Article]. Electronics (Switzerland), 9(2). https://doi.org/10.3390/electronics9020272
    Abstract
    Complexity of current computer networks, including e.g., local networks, large structured networks, wireless sensor networks, datacenter backbones, requires a thorough study to perform analysis and support design. Simulation is a tool of paramount importance to encompass all the different aspects that contribute to design quality and network performance (including as well energy issues, security management overheads, dependability), due to the fact that such complexity produces several interactions at all network layers that is not easily modellable with analytic approaches. In this systematic literature review we aim to analyze, basing our investigation on available literature, the adoption of a popular network simulator, namely ns-3, and its use in the scientific community. More in detail, we are interested in understanding what are the impacted application domains in which authors prefer ns-3 to other similar tools and how extensible it is in practice according to the experience of authors. The results of our analysis, which has been conducted by especially focusing on 128 papers published between 2009 to 2019, reveals that 10% of the evaluated papers were discarded because they represented informal literature; most of the studies presented comparisons among different network simulators, beyond ns-3 and conceptual studies related to performance assessment and validation and routing protocols. Only about 30% of considered studies present extensions of ns-3 in terms of new modules and only about 10% present effective case studies demonstrating the effectiveness of employing network simulator in real application, except conceptual and modeling studies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI Publisher Details
    Details

2019

  1. Campanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
    Abstract
    Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s).
    DOI Publisher Details
    Details
  2. Gribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
    Abstract
    Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
    DOI Publisher Details
    Details

← Back to all publications