Publications by Marco Gribaudo

Published:

2023

  1. Campanile, L., Di Bonito, L. P., Gribaudo, M., & Iacono, M. (2023). A Domain Specific Language for the Design of Artificial Intelligence Applications for Process Engineering [Conference paper]. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 482 LNICST, 133–146. https://doi.org/10.1007/978-3-031-31234-2_8
    Abstract
    Processes in chemical engineering are frequently enacted by one-of-a-kind devices that implement dynamic processes with feedback regulations designed according to experimental studies and empirical tuning of new devices after the experience obtained on similar setups. While application of artificial intelligence based solutions is largely advocated by researchers in several fields of chemical engineering to face the problems deriving from these practices, few actual cases exist in literature and in industrial plants that leverage currently available tools as much as other application fields suggest. One of the factors that is limiting the spread of AI-based solutions in the field is the lack of tools that support the evaluation of the needs of plants, be those existing or to-be settlements. In this paper we provide a Domain Specific Language based approach for the evaluation of the basic performance requirements for cloud-based setups capable of supporting chemical engineering plants, with a metaphor that attempts to bridge the two worlds. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
    DOI Publisher Details
    Details
  2. Bobbio, A., Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2023). A cyber warfare perspective on risks related to health IoT devices and contact tracing [Article]. Neural Computing and Applications, 35(19), 13823–13837. https://doi.org/10.1007/s00521-021-06720-1
    Abstract
    The wide use of IT resources to assess and manage the recent COVID-19 pandemic allows to increase the effectiveness of the countermeasures and the pervasiveness of monitoring and prevention. Unfortunately, the literature reports that IoT devices, a widely adopted technology for these applications, are characterized by security vulnerabilities that are difficult to manage at the state level. Comparable problems exist for related technologies that leverage smartphones, such as contact tracing applications, and non-medical health monitoring devices. In analogous situations, these vulnerabilities may be exploited in the cyber domain to overload the crisis management systems with false alarms and to interfere with the interests of target countries, with consequences on their economy and their political equilibria. In this paper we analyze the potential threat to an example subsystem to show how these influences may impact it and evaluate a possible consequence. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI Publisher Details
    Details

2022

  1. Campanile, L., Iacono, M., Marulli, F., Gribaudo, M., & Mastroianni, M. (2022). A DSL-based modeling approach for energy harvesting IoT/WSN [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2022-May, 317–323. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130645195&partnerID=40&md5=f2d475b445f76d3b5f49752171c0fada
    Abstract
    The diffusion of intelligent services and the push for the integration of computing systems and services in the environment in which they operate require a constant sensing activity and the acquisition of different information from the environment and the users. Health monitoring, domotics, Industry 4.0 and environmental challenges leverage the availability of cost-effective sensing solutions that allow both the creation of knowledge bases and the automatic process of them, be it with algorithmic approaches or artificial intelligence solutions. The foundation of these solutions is given by the Internet of Things (IoT), and the substanding Wireless Sensor Networks (WSN) technology stack. Of course, design approaches are needed that enable defining efficient and effective sensing infrastructures, including energy related aspects. In this paper we present a Domain Specific Language for the design of energy aware WSN IoT solutions, that allows domain experts to define sensor network models that may be then analyzed by simulation-based or analytic techniques to evaluate the effect of task allocation and offioading and energy harvesting and utilization in the network. The language has been designed to leverage the SIMTHESys modeling framework and its multiformalism modeling evaluation features. ©ECMS Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat (Editors) 2022
    Publisher Details
    Details

2021

  1. Barbierato, E., Campanile, L., Gribaudo, M., Iacono, M., Mastroianni, M., & Nacchia, S. (2021). Performance evaluation for the design of a hybrid cloud based distance synchronous and asynchronous learning architecture [Article]. Simulation Modelling Practice and Theory, 109. https://doi.org/10.1016/j.simpat.2021.102303
    Abstract
    The COVID-19 emergency suddenly obliged schools and universities around the world to deliver on-line lectures and services. While the urgency of response resulted in a fast and massive adoption of standard, public on-line platforms, generally owned by big players in the digital services market, this does not sufficiently take into account privacy-related and security-related issues and potential legal problems about the legitimate exploitation of the intellectual rights about contents. However, the experience brought to attention a vast set of issues, which have been addressed by implementing these services by means of private platforms. This work presents a modeling and evaluation framework, defined on a set of high-level, management-oriented parameters and based on a Vectorial Auto Regressive Fractional (Integrated) Moving Average based approach, to support the design of distance learning architectures. The purpose of this framework is to help decision makers to evaluate the requirements and the costs of hybrid cloud technology solutions. Furthermore, it aims at providing a coarse grain reference organization integrating low-cost, long-term storage management services to implement a viable and accessible history feature for all materials. The proposed solution has been designed bearing in mind the ecosystem of Italian universities. A realistic case study has been shaped on the needs of an important, generalist, polycentric Italian university, where some of the authors of this paper work. © 2021 Elsevier B.V.
    DOI Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2021). Hybrid Simulation of Energy Management in IoT Edge Computing Surveillance Systems [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13104 LNCS, 345–359. https://doi.org/10.1007/978-3-030-91825-5_21
    Abstract
    Internet of Things (IoT) is a well established approach used for the implementation of surveillance systems that are suitable for monitoring large portions of territory. Current developments allow the design of battery powered IoT nodes that can communicate over the network with low energy requirements and locally perform some computing and coordination task, besides running sensing and related processing: it is thus possible to implement edge computing oriented solutions on IoT, if the design encompasses both hardware and software elements in terms of sensing, processing, computing, communications and routing energy costs as one of the quality indices of the system. In this paper we propose a modeling approach for edge computing IoT-based monitoring systems energy related characteristics, suitable for the analysis of energy levels of large battery powered monitoring systems with dynamic and reactive computing workloads. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

2020

  1. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Modelling performances of an autonomic router running under attack [Conference paper]. International Journal of Embedded Systems, 12(4), 458–466. https://doi.org/10.1504/IJES.2020.107645
    Abstract
    Modern warehouse-scale computing facilities, seamlessly enabled by virtualisation technologies, are based on thousands of independent computing nodes that are administered according to efficiency criteria that depend on workload. Networks play a pivotal role in these systems, as they are likely to be the performance bottleneck, and because of the high variability of data and management traffic. Because of the scale of the system, the prevalent network management model is based on autonomic networking, a paradigm based on self-regulation of the networking subsystem, that requires routers capable of adapting their policies to traffic by a local or global strategy. In this paper we focus on performance modelling of autonomic routers, to provide a simple, yet representative elementary performance model to provide a starting point for a comprehensive autonomic network modelling approach. The proposed model is used to evaluate the behaviour of a router under attack under realistic workload and parameters assumptions. Copyright © 2020 Inderscience Enterprises Ltd.
    DOI Publisher Details
    Details
  2. Campanile, L., Gribaudo, M., Iacono, M., & Mastroianni, M. (2020). Performance evaluation of a fog WSN infrastructure for emergency management [Article]. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102120
    Abstract
    Advances in technology and the rise of new computing paradigms, such as Fog computing, may boost the definition of a new generation of advanced support services in critical applications. In this paper we explore the possibilities of a Wireless Sensor Network support (WSN) for a Fog computing system in an emergency management architecture that has been previously presented. Disposable intelligent wireless sensors, capable of processing tasks locally, are deployed and used to support and protect the intervention of a squad of firemen equipped with augmented reality and life monitoring devices to provide an environmental monitoring system and communication infrastructure,in the framework of a next-generation, cloud-supported emergency management system. Simulation is used to explore the design parameter space and dimension the workloads and the extension of the WSN, according to an adaptive behavior of the resulting Fog computing system that varies workloads to save the integrity of the WSN. © 2020 Elsevier B.V.
    DOI Publisher Details
    Details
  3. Campanile, L., Gribaudo, M., Iacono, M., Marulli, F., & Mastroianni, M. (2020). Computer network simulation with ns-3: A systematic literature review [Article]. Electronics (Switzerland), 9(2). https://doi.org/10.3390/electronics9020272
    Abstract
    Complexity of current computer networks, including e.g., local networks, large structured networks, wireless sensor networks, datacenter backbones, requires a thorough study to perform analysis and support design. Simulation is a tool of paramount importance to encompass all the different aspects that contribute to design quality and network performance (including as well energy issues, security management overheads, dependability), due to the fact that such complexity produces several interactions at all network layers that is not easily modellable with analytic approaches. In this systematic literature review we aim to analyze, basing our investigation on available literature, the adoption of a popular network simulator, namely ns-3, and its use in the scientific community. More in detail, we are interested in understanding what are the impacted application domains in which authors prefer ns-3 to other similar tools and how extensible it is in practice according to the experience of authors. The results of our analysis, which has been conducted by especially focusing on 128 papers published between 2009 to 2019, reveals that 10% of the evaluated papers were discarded because they represented informal literature; most of the studies presented comparisons among different network simulators, beyond ns-3 and conceptual studies related to performance assessment and validation and routing protocols. Only about 30% of considered studies present extensions of ns-3 in terms of new modules and only about 10% present effective case studies demonstrating the effectiveness of employing network simulator in real application, except conceptual and modeling studies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI Publisher Details
    Details

2019

  1. Campanile, L., Iacono, M., Gribaudo, M., & Mastroianni, M. (2019). Quantitative modeling of the behaviour of an autonomic router [Conference paper]. ACM International Conference Proceeding Series, 193–194. https://doi.org/10.1145/3306309.3306344
    Abstract
    Autonomic routers are the main component on which autonomic networking is founded. Our goal is to provide a first approach performance modeling method that can be usable by networking professionals that are not part of the Performance Evaluation community. © 2019 Copyright held by the owner/author(s).
    DOI Publisher Details
    Details
  2. Gribaudo, M., Campanile, L., Iacono, M., & Mastroianni, M. (2019). Performance modeling and analysis of an autonomic router [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 33(1), 441–447. https://doi.org/10.7148/2019-0441
    Abstract
    Modern networking is moving towards exploitation of autonomic features into networks to reduce management effort and compensate the increasing complexity of network infrastructures, e.g. in large computing facilities such the data centers that support cloud services delivery. Autonomicity provides the possibility of reacting to anomalies in network traffic by recognizing them and applying administrator defined reactions without the need for human intervention, obtaining a quicker response and easier adaptation to network dynamics, and letting administrators focus on general system-wide policies, rather than on each component of the infrastructure. The process of defining proper policies may benefit from adopting model-based design cycles, to get an estimation of their effects. In this paper we propose a model-based analysis approach of a simple autonomic router, using Stochastic Petri Nets, to evaluate the behavior of given policies designed to react to traffic workloads. The approach allows a detailed analysis of the dynamics of the policy and is suitable to be used in the preliminary phases of the design cycle for a Software Defined Networks compliant router control plane. ©ECMS Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco (Editors).
    DOI Publisher Details
    Details

← Back to all publications