Publications by Carlo Sanghez

Published:

2022

  1. Campanile, L., Cesarano, M., Palmiero, G., & Sanghez, C. (2022). Break the Fake: A Technical Report on Browsing Behavior During the Pandemic [Conference paper]. Smart Innovation, Systems and Technologies, 309, 573–586. https://doi.org/10.1007/978-981-19-3444-5_49
    Abstract
    The widespread use of the internet as the main source of information for many users has led to the spread of fake news and misleading information as a side effect. The pandemic that in the last 2 years has forced us to change our lifestyle and to increase the time spent at home, has further increased the time spent surfing the Internet. In this work we analyze the navigation logs of a sample of users, in compliance with the current privacy regulation, comparing and dividing between the different categories of target sites, also identifying some well-known sites that spread fake news. The results of the report show that during the most acute periods of the pandemic there was an increase in surfing on untrusted sites. The report also shows the tendency to use such sites in the evening and night hours and highlights the differences between the different years considered. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
    DOI Publisher Details
    Details
  2. Campanile, L., Forgione, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2022). Evaluating the Impact of Data Anonymization in a Machine Learning Application [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13380 LNCS, 389–400. https://doi.org/10.1007/978-3-031-10542-5_27
    Abstract
    The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI Publisher Details
    Details

2021

  1. Campanile, L., Forgione, F., Marulli, F., Palmiero, G., & Sanghez, C. (2021). Dataset Anonimyzation for Machine Learning: An ISP Case Study [Conference paper]. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12950 LNCS, 589–597. https://doi.org/10.1007/978-3-030-86960-1_42
    Abstract
    Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data. © 2021, Springer Nature Switzerland AG.
    DOI Publisher Details
    Details
  2. Campanile, L., Marulli, F., Mastroianni, M., Palmiero, G., & Sanghez, C. (2021). Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 343–353. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137959400&partnerID=40&md5=eb78330cb4d585e500b77cd906edfbc7
    Abstract
    In this paper, we introduce a solution aiming to improve the accuracy of the surface temperature detection in an outdoor environment. The temperature sensing subsystem relies on Mobotix thermal camera without the black body, the automatic compensation subsystem relies on Raspberry Pi with Node-RED and TensorFlow 2.x. The final results showed that it is possible to automatically calibrate the camera using machine learning and that it is possible to use thermal imaging cameras even in critical conditions such as outdoors. Future development is to improve performance using computer vision techniques to rule out irrelevant measurements. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

← Back to all publications