Publications by Antonio Balzanella
Published:
2026
- DetailsConference Toward Privacy-Aware Environmental Monitoring of CO2 and Air Pollutants in Southern ItalyCampanile, L., Di Bonito, L. P., Marulli, F., Balzanella, A., & Verde, R. (2026). Toward Privacy-Aware Environmental Monitoring of CO2 and Air Pollutants in Southern Italy [Conference paper]. Lecture Notes in Computer Science, 15893 LNCS, 317–333. https://doi.org/10.1007/978-3-031-97645-2_21
Abstract
The increasing levels of CO2 and air pollutants represent a major challenge to environmental sustainability and public health, particularly in regions characterized by complex geographic and socio-economic dynamics. This work proposes a study focused on the Southern Italy regions, where environmental vulnerabilities are displayed, along with a limited availability of high-granularity data. The main aim of this work is to build and provide a comprehensive and detailed dataset tailored to the region’s unique needs, by leveraging datasets from EDGAR for greenhouse gases and air pollutants, integrated with demographic and territorial morphology data from ISTAT. The creation of composite indicators to monitor trends in emissions and pollution on a fine spatial scale is supported by the data set. These indicators enable initial insight into spatial disparities in pollutant concentrations, offering valuable data to inform targeted policy interventions. The work provided a foundation for next analytical studies, integrating different datasets and highlighting the potential for complex spatiotemporal analysis. The study provides a robust dataset and preliminary insights, enhancing the understanding of environmental dynamics in Southern Italy. Subsequent efforts will focus on extending this methodology to more extensive geographic contexts and incorporating real-time data for adaptive monitoring. The proposed framework also lays the groundwork for privacy-aware environmental monitoring solutions, enabling future integration with edge and IoT-based architectures while addressing privacy and data protection concerns. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2021
- DetailsMarulli, F., Balzanella, A., Campanile, L., Iacono, M., & Mastroianni, M. (2021). Exploring a Federated Learning Approach to Enhance Authorship Attribution of Misleading Information from Heterogeneous Sources [Conference paper]. Proceedings of the International Joint Conference on Neural Networks, 2021-July. https://doi.org/10.1109/IJCNN52387.2021.9534377
Abstract
Authorship Attribution (AA) is currently applied in several applications, among which fraud detection and anti-plagiarism checks: this task can leverage stylometry and Natural Language Processing techniques. In this work, we explored some strategies to enhance the performance of an AA task for the automatic detection of false and misleading information (e.g., fake news). We set up a text classification model for AA based on stylometry exploiting recurrent deep neural networks and implemented two learning tasks trained on the same collection of fake and real news, comparing their performances: one is based on Federated Learning architecture, the other on a centralized architecture. The goal was to discriminate potential fake information from true ones when the fake news comes from heterogeneous sources, with different styles. Preliminary experiments show that a distributed approach significantly improves recall with respect to the centralized model. As expected, precision was lower in the distributed model. This aspect, coupled with the statistical heterogeneity of data, represents some open issues that will be further investigated in future work. © 2021 IEEE.
