Publications tagged with speech
Published:
Publications tagged with "speech"
- Verde, L., Marulli, F., De Fazio, R., Campanile, L., & Marrone, S. (2024). HEAR set: A ligHtwEight acoustic paRameters set to assess mental health from voice analysis [Article]. Computers in Biology and Medicine, 182. https://doi.org/10.1016/j.compbiomed.2024.109021
Abstract
Background: Voice analysis has significant potential in aiding healthcare professionals with detecting, diagnosing, and personalising treatment. It represents an objective and non-intrusive tool for supporting the detection and monitoring of specific pathologies. By calculating various acoustic features, voice analysis extracts valuable information to assess voice quality. The choice of these parameters is crucial for an accurate assessment. Method: In this paper, we propose a lightweight acoustic parameter set, named HEAR, able to evaluate voice quality to assess mental health. In detail, this consists of jitter, spectral centroid, Mel-frequency cepstral coefficients, and their derivates. The choice of parameters for the proposed set was influenced by the explainable significance of each acoustic parameter in the voice production process. Results: The reliability of the proposed acoustic set to detect the early symptoms of mental disorders was evaluated in an experimental phase. Voices of subjects suffering from different mental pathologies, selected from available databases, were analysed. The performance obtained from the HEAR features was compared with that obtained by analysing features selected from toolkits widely used in the literature, as with those obtained using learned procedures. The best performance in terms of MAE and RMSE was achieved for the detection of depression (5.32 and 6.24 respectively). For the detection of psychogenic dysphonia and anxiety, the highest accuracy rates were about 75 % and 97 %, respectively. Conclusions: The comparative evaluation was carried out to assess the performance of the proposed approach, demonstrating a reliable capability to highlight affective physiological alterations of voice quality due to the considered mental disorders. © 2024 The Author(s) - Verde, L., Campanile, L., Marulli, F., & Marrone, S. (2022). Speech-based Evaluation of Emotions-Depression Correlation. Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927758
Abstract
Early detection of depression symptoms is fundamental to limit the onset of further associated behavioural disorders, such as psychomotor or social withdrawal. The combination of Artificial Intelligence and speech analysis revealed the existence of objectively measurable physical manifestations for early detection of depressive symptoms, constituting a valid support to evaluate these signals. To push forward the research state-of-art, this aim of this paper is to understand quantitative correlations between emotional states and depression by proposing a study across different datasets containing speech of both depressed/non-depressed people and emotional-related samples. The relationship between affective measures and depression can, in fact, a support to evaluate the presence of depression state. This work constitutes a preliminary step of a study whose final aim is to pursue AI-powered personalized medicine by building sophisticated Clinical Decision Support Systems for depression, as well as other psychological disorders. © 2022 IEEE.