Publications tagged with Ships
Published:
Publications tagged with "Ships"
- Di Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
Abstract
This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors - Campanile, L., Di Bonito, L. P., Iacono, M., & Di Natale, F. (2023). Prediction of chemical plants operating performances: a machine learning approach [Conference paper]. Proceedings - European Council for Modelling and Simulation, ECMS, 2023-June, 575–581. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163436467&partnerID=40&md5=2e96d04affd9bb4a126b224d7cc8d75a
Abstract
Modern environmental regulations require rigorous optimization of operations in process engineering to reduce waste, pollution, and risks while maximizing efficiency. However, the nature of chemical plants, which include components with non-linear behavior, challenges the use of consolidated tuning and control techniques. Instead, ad-hoc, self-adapting, and time-variant controls, with a balanced tuning of parameters at both the subsystem and system level, may be necessary. Needed computing processes may require significant resources and high performance systems, if managed by means of traditional approaches and with exact solution methods. In this regard, domain experts suggest instead the use of integrated techniques based on Artificial Intelligence (AI), which include Explainable AI (XAI) and Trustworthy AI (TAI), which are unique in this industry and still in the early stages of development. To pave the way for a real-time, cost-effective solution for this problem, this paper proposes an AI-based approach to model the performance of a real chemical plant, i.e. a marine scrubber installed on a Ro-Ro ship. The study aims to investigate Machine Learning (ML) techniques which can be used to model such processes. Notably, this analysis is the first of its kind, at the best of the authors’ knowledge. Overall, the study highlights the potential of using ML-based techniques, to optimize environmental compliance in the shipping industry. © ECMS Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni (Editors) 2023.