Publications tagged with Mean square error

Published:

Publications tagged with "Mean square error"

  1. Di Bonito, L. P., Campanile, L., Iacono, M., & Di Natale, F. (2025). An eXplainable Artificial Intelligence framework to predict marine scrubbers performances [Article]. Engineering Applications of Artificial Intelligence, 160. https://doi.org/10.1016/j.engappai.2025.111860
    Abstract
    This study presents an eXplainable Artificial Intelligence (XAI) framework to predict the performance of marine scrubbers used for sulfur dioxide (SO2) removal from marine diesel engine flue gases. Using an aggregated dataset from a roll-on/roll-off (Ro-Ro) cargo ship equipped with an open-loop scrubber, combined with satellite data, the study constructs and evaluates multiple artificial intelligence models, including ensemble models, which were benchmarked against each other using standard regression metrics such as the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE). Results achieve high accuracy R2>0.92 and offer insights for optimizing scrubber operations. Nevertheless, artificial intelligence models lack transparency. To overcome this problem, this research integrates post-hoc explainability techniques to elucidate the contributions of various features to model predictions, thereby enhancing interpretability and reliability. The integration of SHapley Additive exPlanations (SHAP) and Explain Like I’m 5 (ELI5) not only confirmed the consistency of feature importance rankings (e.g. seawater acidity level, SO2 inlet concentration, outlet temperature) but also aligned with the physical-chemical principles of SO2 absorption. Quantitative comparisons with theoretical expectations demonstrated the reliability of the XAI insights, enhancing both model transparency and interpretability. This can improve the current capability of designing scrubber units by defining more efficient and less expensive options for environmental regulation compliance. © 2025 The Authors
    DOI Publisher Details
    Details
  2. Campanile, L., Cantiello, P., Iacono, M., Lotito, R., Marulli, F., & Mastroianni, M. (2021). Applying Machine Learning to Weather and Pollution Data Analysis for a Better Management of Local Areas: The Case of Napoli, Italy [Conference paper]. International Conference on Internet of Things, Big Data and Security, IoTBDS - Proceedings, 2021-April, 354–363. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135227609&partnerID=40&md5=5a7c117fa01d0ba8d779b0e092bc0f63
    Abstract
    Local pollution is a problem that affects urban areas and has effects on the quality of life and on health conditions. In order to not develop strict measures and to better manage territories, the national authorities have applied a vast range of predictive models. Actually, the application of machine learning has been studied in the last decades in various cases with various declination to simplify this problem. In this paper, we apply a regression-based analysis technique to a dataset containing official historical local pollution and weather data to look for criteria that allow forecasting critical conditions. The methods was applied to the case study of Napoli, Italy, where the local environmental protection agency manages a set of fixed monitoring stations where both chemical and meteorological data are recorded. The joining of the two raw dataset was overcome by the use of a maximum inclusion strategy as performing the joining action with”outer” mode. Among the four different regression models applied, namely the Linear Regression Model calculated with Ordinary Least Square (LN-OLS), the Ridge regression Model (Ridge), the Lasso Model (Lasso) and Supervised Nearest Neighbors Regression (KNN), the Ridge regression model was found to better perform with an R2 (Coefficient of Determination) value equal to 0.77 and low value for both MAE (Mean Absolute Error) and MSE (Mean Squared Error), equal to 0.12 and 0.04 respectively. © 2021 by SCITEPRESS - Science and Technology Publications, Lda.
    Publisher Details
    Details

← Back to all publications