DOI Publisher Details Copy BibTeX Download .bib
{"key"=>"Campanile2022389", "type"=>"Conference paper", "bibtex"=>"@article{Campanile2022389,\n author = {Campanile, Lelio and Forgione, Fabio and Mastroianni, Michele and Palmiero, Gianfranco and Sanghez, Carlo},\n title = {Evaluating the Impact of Data Anonymization in a Machine Learning Application},\n year = {2022},\n journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},\n volume = {13380 LNCS},\n pages = {389 – 400},\n doi = {10.1007/978-3-031-10542-5_27}\n}\n", "author"=>"Campanile, Lelio and Forgione, Fabio and Mastroianni, Michele and Palmiero, Gianfranco and Sanghez, Carlo", "author_array"=>[{"first"=>"Lelio", "last"=>"Campanile", "prefix"=>"", "suffix"=>""}, {"first"=>"Fabio", "last"=>"Forgione", "prefix"=>"", "suffix"=>""}, {"first"=>"Michele", "last"=>"Mastroianni", "prefix"=>"", "suffix"=>""}, {"first"=>"Gianfranco", "last"=>"Palmiero", "prefix"=>"", "suffix"=>""}, {"first"=>"Carlo", "last"=>"Sanghez", "prefix"=>"", "suffix"=>""}], "author_0_first"=>"Lelio", "author_0_last"=>"Campanile", "author_0_prefix"=>"", "author_0_suffix"=>"", "author_1_first"=>"Fabio", "author_1_last"=>"Forgione", "author_1_prefix"=>"", "author_1_suffix"=>"", "author_2_first"=>"Michele", "author_2_last"=>"Mastroianni", "author_2_prefix"=>"", "author_2_suffix"=>"", "author_3_first"=>"Gianfranco", "author_3_last"=>"Palmiero", "author_3_prefix"=>"", "author_3_suffix"=>"", "author_4_first"=>"Carlo", "author_4_last"=>"Sanghez", "author_4_prefix"=>"", "author_4_suffix"=>"", "title"=>"Evaluating the Impact of Data Anonymization in a Machine Learning Application", "year"=>"2022", "journal"=>"Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)", "volume"=>"13380 LNCS", "pages"=>"389 – 400", "doi"=>"10.1007/978-3-031-10542-5_27", "url"=>"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135904907&doi=10.1007%2f978-3-031-10542-5_27&partnerID=40&md5=b550cf760c368d94894bd31b11163284", "abstract"=>"The data protection impact assessment is used to verify the necessity, proportionality and risks of data processing. Our work is based on the data processed by the technical support of a Wireless Service Provider. The team of WISP tech support uses a machine learning system to predict failures. The goal of our the experiments was to evaluate the DPIA with personal data and without personal data. In fact, in a first scenario, the experiments were conducted using a machine learning application powered by non-anonymous personal data. Instead in the second scenario, the data was anonymized before feeding the machine learning system. In this article we evaluate how much the Data Protection Impact Assessment changes when moving from a scenario with raw data to a scenario with anonymized data. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.", "author_keywords"=>"Data disappearance; DPIA; GDPR; Illegitimate access to data; Privacy; Risks; Unwanted modification of data; WISP", "keywords"=>"Computer aided instruction; Machine learning; Risk assessment; Data disappearance; Data protection impact assessments; DPIA; GDPR; Illegitimate access to data; Machine learning applications; Machine learning systems; Privacy; Unwanted modification of data; WISP; Data privacy", "publication_stage"=>"Final", "source"=>"Scopus", "note"=>"Cited by: 1"}